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Abstract
Recent years have witnessed a widespread adoption of con-
tainers. While containers simplify and accelerate application
development, existing container network technologies either
incur significant overhead, which hurts performance for dis-
tributed applications, or lose flexibility or compatibility, which
hinders the widespread deployment in production.

We carefully analyze the kernel data path of an overlay
network, quantifying the time consumed by each segment of
the data path and identifying the extra overhead in an overlay
network compared to bare metal. We observe that this extra
overhead generates repetitive results among packets, which
inspires us to introduce caches within an overlay network.

We design and implement ONCache (Overlay Network
Cache), a cache-based container overlay network, to elim-
inate the extra overhead while maintaining flexibility and
compatibility. We implement ONCache using the extended
Berkeley Packet Filter (eBPF) with only 524 lines of code,
and integrate it as a plugin of Antrea. With ONCache, con-
tainers attain networking performance akin to that of bare
metal. Compared to the standard overlay networks, ONCache
improves throughput and request-response transaction rate
by 12% and 36% for TCP (20% and 34% for UDP), respec-
tively, while significantly reducing per-packet CPU overhead.
Popular distributed applications also benefit from ONCache.

1 Introduction

Containers [9, 21] are becoming increasingly popular for dis-
tributed application deployment due to their flexibility and
lightweight nature. By bundling an application along with all
its dependencies and configuration files into one container
image, containers bring forth the ability to build once and
run anywhere. Furthermore, containers leverage the host OS
kernel instead of emulating an entire OS, and thus are more
lightweight than virtual machines. Container orchestration
tools such as Kubernetes [35], Docker Swarm [22], etc., fur-
ther reduce container management complexity by facilitating

Technology Performance Flexibility Compatibility

Host ! % !

Bridge ! % !

Macvlan ! % !

IPvlan ! % !

SR-IOV [64] ! % !

Overlay % ! !

Falcon [37] % ! !

Slim [74] ! ! %

ONCache ! ! !

Table 1: Compare container networking technologies.

features like auto-deployment, auto-scaling, and auto-high-
availability [8].

Container networks play a key role in enabling communi-
cation between containers and supporting distributed applica-
tions. Ideally, a container network should offer low-overhead,
high-performance networking while preserving flexibility and
compatibility. However, none of the existing container net-
works fully satisfy these expectations, as outlined in Table 1.

Hurt flexibility. Containers in the host network share
the host IP address and must coordinate ports on the host,
constraining deployment flexibility. Bridge networks or de-
vice virtualization techniques (such as Macvlan/IPvlan/SR-
IOV [64]) allow containers to have their own IP addresses and
directly forward container packets to the underlay network.
However, these networks require either all hosts to be in the
same L2 network or the underlay network to be capable of
routing container packets, imposing restrictions on container
placement, migration, or network configuration.

Poor performance and high overhead. Container overlay
networks utilizing tunneling techniques (e.g., VXLAN [41])
completely decouple containers and the underlay network,
facilitating the configuration of container IP addresses regard-
less of the underlay network. Nonetheless, it incurs signif-
icant overhead [37, 38, 65, 74]. Our experiments show that
compared to bare metal, the throughput of a single TCP flow
in a tunnel-based overlay network is about 11% lower, with



the TCP request-response transaction rate being around 29%
lower. Moreover, CPU utilization is much higher in both ex-
periments. While certain techniques [36, 37, 59] endeavor to
enhance overlay networks by distributing ingress packet pro-
cessing across multiple CPU cores, the processing overhead
of overlay networks remains significant.

Hurt compatibility. Slim [74] and its follow-up works [12,
39, 40] implement overlay networks via socket replacement,
enabling containerized applications to utilize the host’s sock-
ets. While they maintain low overhead and some degree of
flexibility in overlay networks, they do not inherently sup-
port non-connection-based protocols (e.g., UDP, ICMP) or
container live migration. Additionally, they may conflict with
tunneling-headers-based policies in the underlay network.

To attain high performance, flexibility, and compatibility at
the same time, we design and implement ONCache (Overlay
Network Cache), a container overlay network featuring a
cache-based and low-overhead fast path. ONCache can be
seamlessly integrated into existing standard overlay networks
and has been tested with Antrea [1] and Flannel [28].

Our detailed contributions are summarized as follows:
1. We carefully analyze the kernel data path of popular con-

tainer overlay networks (Antrea and Cilium) alongside
bare metal, quantifying the time consumption of each
segment of the overhead. Our analysis reveals the extra
overhead incurred by container overlay networks. How-
ever, the overhead disperses across the kernel data path,
presenting a significant challenge in mitigating it while
preserving essential functionalities. (§2.2)

2. We identify the invariance property within the extra over-
head, indicating that the processing results of the extra
overhead are repetitive among packets. This property
inspires us to use caches in overlay networks. (§2.4)

3. We propose a cache-based fast path for container overlay
networks. The fast path bypasses the extra overhead
without losing flexibility and compatibility. (§3)

4. We evaluate ONCache with microbenchmarks and pop-
ular distributed applications. Results demonstrate sig-
nificant improvement of ONCache in throughput (12%
higher with iperf3), latency (36% higher transaction rate),
and CPU utilization (26% lower per-transaction) com-
pared to the standard overlay networks, approaching per-
formance akin to that of bare metal. Applications such as
Memcached, PostgreSQL, and Nginx all derive benefits
from ONCache. (§4)

ONCache’s source code is publicly available at https:
//github.com/shengkai16/ONCache.

This work does not raise any ethical issues.

2 Background and Motivation

We analyze inter-host container networks, where overlay net-
works stand out for the superior flexibility and compatibility.

After quantifying the detailed overhead of overlay networks
and exploring recent efforts aimed at mitigating this overhead,
we provide the motivation of ONCache.

2.1 Inter-host Container Networks

Container networks play a key role in facilitating communica-
tion among containers and with the external world. Below, we
focus on inter-host container networks, which are classified
based on the IP addresses utilized by applications and the
physical network.

Both use host IP addresses. Host networks fall into
this category. Containers within host networks share the
host’s network namespace and utilize the host’s IP address.
Host networks offer performance comparable to that of bare
metal (where applications directly execute on the host) [65].
Nonetheless, host networks demand coordination of ports
among containers residing on the same host, thereby substan-
tially limiting application flexibility. This limitation renders
host networks seldom used in production [66].

Both use container IP addresses. Bridge networks and
device virtualization techniques, such as Macvlan, IPvlan,
SR-IOV, fall into this category. In these networks, each con-
tainer is assigned a unique IP address and is isolated from
the host namespace. In bridge networks, all the containers are
connected to Open vSwitch (OVS) [1], bridge [28], or similar
entity, relying on them to forward packets to the physical net-
work. Networks employing device virtualization techniques
emulate multiple virtual interfaces with different IP addresses
on each physical interface, with each virtual interface being
attached to a container. These networks deliver performance
akin to that of bare metal due to their simple data paths.

However, owing to their utilization of container IP ad-
dresses in the physical network, the above approaches exhibit
poor flexibility. To route container IP addresses, one must
either (1) place all hosts into one L2 network or (2) install
and manage routing rules for container IP addresses within
the physical network. These requirements impose constraints
on container placement, migration or network configuration.

App uses container IP addresses and the physical net-
work uses host IP addresses. Overlay networks fall within
this category. In overlay networks, each container has its own
IP address, and container packets are encapsulated using a tun-
neling protocol (e.g., VXLAN [41] or GENEVE [29]) before
being transmitted to the physical network. Overlay networks
completely decouple containers from the physical network,
thereby ensuring flexibility for both. However, tunneling in-
curs extra overhead and hurts performance (see §2.2).

Takeaway #1 Overlay networks decouple applications from
the physical network, allowing for application deployment
without concern for physical network configuration, and vice
versa. Given the superior flexibility of overlay networks, we
focus on analyzing and improving overlay networks.

https://github.com/shengkai16/ONCache
https://github.com/shengkai16/ONCache


Egress Ingress

Data path Overhead type Antrea Cilium BM Ours Overhead type Antrea Cilium BM Ours

Application
network stack

skb allocation 1505 1566 1461 1509 skb releasing 715 818 780 714
Conntrack 778 0 788 763 Conntrack 616 0 600 592
Netfilter 0 0 305 0 Netfilter 0 0 173 0
Others 423 560 547 519 Others 838 1016 979 982

Veth pair* NS traversing 562 594 489 NS traversing 400
eBPF* eBPF 1513 511 eBPF 1429 289

Open vSwitch*
Conntrack 872 Conntrack 758
Flow matching 354 Flow matching 308
Action execution 92 Action execution 66

VXLAN
network stack*

Conntrack 0 471 Conntrack 0 271
Netfilter 667 421 Netfilter 466 303
Routing 50 468 Routing 294 554
Others 319 127 Others 619 444

Link layer Link layer 1858 1763 1799 1700 Link layer 2790 2848 2800 2737
Sum 7479 7483 4900 5491 7869 7683 5332 5315

Latency (µs) 22.97 23.15 16.57 17.49 22.97 23.15 16.57 17.49

Table 2: Overhead breakdown of different networks. All values, except for the end-to-end latency in the last row, are in
nanoseconds. BM stands for bare metal. Ours, i.e., ONCache, is proposed in §3 and evaluated in §4. “*” denotes the extra
overhead compared to bare metal. Due to the limitations of the measurement tool, there is an error of about 200 ns.

2.2 Analysis of Overlay Network Overhead

Prior studies [37,38,65,74] have shown the poor performance
of overlay networks. We further quantify the overhead of
two common overlay networks: Antrea [1] (v1.9.0) and Cil-
ium [13] (v1.12.4), in comparison with bare metal.

Our analysis of the networks follows these steps. First, we
qualitatively deconstruct the egress and ingress data paths
using flame graphs [27], which provide comprehensive func-
tion call stacks on the data path. Next, we identify the exact
functions (alongside their call stacks) that represent each seg-
ment of the overhead from the flame graphs. Finally, we mea-
sure the execution time for each function using the extended
Berkeley Packet Filter (eBPF) and subsequently calculate the
execution time for each segment of the overhead. The detailed
analysis method is provided in Appendix A.

Table 2 presents the deconstructed overhead and the ex-
ecution time for each segment of the overhead. Each listed
execution time is the average of all the timing samples within
a 1-second 1-byte TCP request-response (RR) test. We pri-
marily analyze the overhead within bare metal and Antrea (“*”
denotes the extra overhead compared to bare metal), while the
distinct overhead within Cilium is also discussed. ONCache
(ours) is analyzed in §4.

Application network stack. The application network stack
directly interacts with applications. On the egress path, the
application writes data to the socket. The application network
stack then allocates a socket buffer (i.e., skb) for the data and
encapsulates the packet layer by layer. Conversely, on the
ingress path, the network stack decapsulates the headers and
releases the socket buffer. Additionally, netfilter [47] filters
packets on both the ingress and egress paths. Conntrack [18],
as a component of netfilter, tracks connection (not TCP con-
nections, defined by, for example, 5-tuple: source IP address,
source port, destination IP address, destination port, and trans-

port protocol) states and facilitates stateful filters to address
probes and denial-of-service attacks. The execution of netfil-
ter and conntrack depends on the system configuration.

Veth pair*. Containers run applications within individual
network namespaces and employ veth pairs [69] to connect
with the host namespace. Traversing veth pairs incurs over-
head, which includes transmit queuing on the sender veth and
software interrupt scheduling on the receiver veth. In Cilium,
although the overhead of traversing veth pairs can be miti-
gated on the ingress path through bpf (Berkeley Packet Filter)
redirect [71], it still exists on the egress path [17].

OVS*. OVS filters packets and intra-host routes packets
between containers and the host interface. These filtering and
routing actions are described by flows. The overhead in OVS
can be categorized into connection tracking, flow matching,
and action execution. Despite OVS employing a cache to ex-
pedite flow matching [53], connection tracking still consumes
a substantial amount of CPU time. Cilium implements similar
functionalities as OVS in eBPF [16]. However, the overall
eBPF execution time is similar to that of OVS.

VXLAN1 network stack*. The VXLAN network stack
performs egress and ingress routing for VXLAN packets and
encapsulates or decapsulates the outer headers (including
VXLAN header, UDP header, IP header, and MAC header) to
or from the packets. In Antrea, VXLAN routing is accelerated
by OVS, resulting in notably low routing overhead. Addition-
ally, conntrack tracks connections, and netfilter filters packets
at this stage.

Link layer. On the egress path, the link layer queues and
transmits packets to the network; on the ingress path, it allo-
cates socket buffers and receives packets from the network.

Takeaway #2 The extra overhead in overlay networks, in-

1We take VXLAN as an example in following discussion. The analysis is
similar for other tunneling protocols.



cluding veth pair, OVS (or similar entity), and the VXLAN
network stack, incurs significant overhead and degrades net-
work performance. Given its dispersion across various parts
of the data path, mitigating the overhead while preserving
essential functionalities presents a significant challenge.

2.3 Related Works on Overlay Networks
There are some recent efforts that aim at improving the per-
formance of overlay networks.

Socket replacement. Slim [74] introduces a socket re-
placement mechanism that improves container overlay net-
work performance. It establishes TCP connections in the host
namespace and replaces TCP sockets in containers by those
in the host namespace. While improving TCP performance,
Slim exhibits notable limitations. Firstly, it does not support
non-connection-based protocols such as UDP and ICMP, or
container live migration, thereby constraining its compatibil-
ity. Secondly, Slim packets are not tunneling packets, which
impacts underlay network policies that match on tunneling
headers. Furthermore, Slim must establish an overlay connec-
tion for service discovery during connection setup, resulting
in prolonged setup time. Some subsequent works [12, 39, 40]
follow Slim’s idea and improve connection setup time. How-
ever, they still suffer from the former two shortcomings.

CPU load balancing. Linux scaling techniques, such as
Receive Packet Steering (RPS) and Receive Flow Steering
(RFS) (and their hardware counterparts Receive Side Scal-
ing (RSS) and Accelerated RFS (aRFS)) [59], improve per-
formance by distributing ingress packet processing across
multiple CPU cores and trying to reduce cache miss rate.
Falcon [37] and mFlow [36] explore different strategies for
distributing packet processing across multiple cores. How-
ever, they improve network performance at the cost of higher
CPU utilization. Additionally, they only take effects on the
ingress path and cannot further improve performance if the
bottleneck lies in the egress path.

Takeaway #3 Despite many efforts to improve overlay net-
works, none of them simultaneously maintains low overhead,
high performance, high flexibility and high compatibility.

2.4 Motivation: the Invariance Property
Based on the analysis in §2.2, we further classify the pro-
cessing of the extra overhead into following types: connec-
tion tracking, packet filtering, intra-host routing, namespaces
traversing and outer-header processing 2. Among these over-
head types, namespaces traversing does not yield any process-
ing result, while the other four exhibit an invariance property.

Invariance in connection tracking. To the best of our
knowledge, all common connection trackers (e.g., those in
netfilter [2], OVS [51], Cilium [15]) have an established state,

2If Kubernetes ClusterIP Service [62] is enabled, inter-host container
traffic also needs Network Address Translation (NAT), as discussed in §3.5.

which signifies that the connection tracker has observed two-
way communication of a connection. Once in the established
state, the connection does not switch to another state until its
completion.

Invariance in packet filtering. Packet filters can be clas-
sified into two types: stateless and stateful. Stateless filters
only match on packet fields, typically the 5-tuple. Stateful
filters also take into account the connection state, which is
provided by the connection tracker. While OVS and netfilter
contain numerous filters, the final decision to allow or deny
packets with the same 5-tuple remains unchanged once the
flow enters the established state.

Invariance in intra-host routing. If the container IP ad-
dresses are within the same subnet, layer-2 routing is enough,
and the packet can be directly forwarded to the target inter-
face. Otherwise, layer-3 routing is necessary and the MAC
addresses should be modified before forwarding the packet. In
both scenarios, the intra-host routing decisions are invariant
for packets destined to the same container IP address.

Invariance in outer-header processing. On the ingress
path, the outer headers are simply removed after checking
fields such as destination and Time-to-Live (TTL). The cor-
rectness of the payload is ensured by the checksum of the
inner headers. The egress path encapsulates the outer headers,
whose most fields are related to routing and network con-
figuration. On the same host, these fields are invariant for
packets destined to the same container IP address: (1) The
outer MAC header stores the MAC addresses, VLAN, and
Ethernet type, which are invariant. (2) The IP addresses, pro-
tocol, TTL, differentiated services code point (DSCP), etc.
in the outer IP header are invariant. Length, identification
(ID), checksum fields vary among packets, but they can be
easily updated with little computation. (3) In the outer UDP
header, the destination port (VXLAN set to 4789), and the
checksum (VXLAN set to 0)3 are invariant [41]. The source
port is calculated by simply hashing the 5-tuple of the inner
headers. The length field can also be easily updated. (4) The
VXLAN header stores the VXLAN network identifier (VNI),
which does not change in an overlay network.

Takeaway #4 The extra overhead of overlay networks ex-
hibits an invariance property. This observation motivates us
to introduce caches to eliminate the extra overhead.

3 ONCache

ONCache is a container overlay network that offers a cache-
based fast path with low overhead, high performance, flexibil-
ity, and compatibility. It is essentially a plug-in of standard
overlay networks such as Antrea, Flannel. ONCache adopts a
fail-safe design: when the fast path is unavailable, the traffic
seamlessly falls back to the standard overlay network.

3While UDP checksum is necessary for certain tunneling protocols such
as GENEVE, the computational overhead is low.
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Figure 1: Architecture of ONCache. ONCache consists of 4
eBPF programs in the data path, 3 eBPF maps, and 1 user
space program. The components with the eBPF logo (“bee”)
represent eBPF programs or eBPF maps. dIP is short for
destination IP address.

eBPF Program Abbr. Hook Point

Egress-Prog E-Prog TC ingress of the veth (host-side)
Ingress-Prog I-Prog TC ingress of the host interface

Egress-Init-Prog EI-Prog TC egress of the host interface
Ingress-Init-Prog II-Prog TC ingress of the veth (container-side)

Table 3: Hook points of the four eBPF programs.

Define cache: Inspired by the invariance property dis-
cussed in §2.4, ONCache defines three caches—the egress
cache, the ingress cache, and the filter cache—on each host to
store the invariant results of the extra overhead. The detailed
design of these caches is introduced in §3.1.

Initialize cache: ONCache relies on a standard overlay
network to initialize the cache. In the event of a cache miss,
ONCache passes the packet to the standard overlay network
for processing and stores the processing results in caches if
the packet’s flow reaches the established state. See §3.2 for
the detailed design.

Utilize cache: Upon a cache hit, ONCache filters the packet
using the cached filtering results, constructs a tunneling packet
using the cached outer headers, and then redirects the packet to
the target interface by the cached routing decision. The cache-
based fast path eliminates the expensive repetitive processing
of multiple layers, as analyzed in §2.4, by several lightweight
cache lookups. The detailed design is described in §3.3.

Maintain cache: ONCache ensures that the outdated cache
entries are appropriately evicted when network-changing
events (including container deletion, migration, and filter mod-
ification) happen. This is discussed in §3.4.

Cache compatibility: ONCache focuses on inter-host con-
tainer networking and is also compatible with various traffic
and features in the network. This is discussed in §3.5.

Optional improvements: We provide two optional im-
provements to further enhance performance. As they require
kernel or tunneling protocol modifications, they are not ap-
plied as default designs. This is described in §3.6.

For ease of implementation and deployment, we imple-

ment ONCache with eBPF [24,70]. eBPF is a technology that
runs sandboxed programs within a privileged context like the
Linux kernel, thereby safely and efficiently extending the ca-
pabilities of the kernel. eBPF programs are attached to kernel
hook points (e.g., TC (traffic control) or XDP (eXpress Data
Path) [31]) and are triggered each time the kernel executes
through the hook points. eBPF stores data in a map data struc-
ture residing in kernel space, called eBPF map. Numerous
prior works leverage eBPF for networking [4, 44, 56, 67, 72].

ONCache includes the following components, as shown in
Figure 1: (1) four eBPF programs for packet processing and
forwarding, with their hook points listed in Table 3; (2) three
eBPF maps per host serving as the egress cache, the ingress
cache, and the filter cache; (3) one user space daemon. The
implementation of ONCache are much simpler compared to
Slim and Falcon. The core functionalities can be realized with
only 524 lines of eBPF C code, whereas Slim requires 2380
lines of code. Falcon, implemented with 606 lines of kernel
code, is harder to implement and debug than eBPF. The core
source code is shown in Appendix B.

Our idea diverges fundamentally from other cache-based
network techniques. Prior works, such as OVS [53,58] and An-
dromeda [20], leverage caches to accelerate flow/rule match-
ing on their data paths. However, as analyzed in §2.2, the
container overlay network remains suboptimal even with the
utilization of the OVS cache, revealing the insufficiency of
caching results of a individual layer. In contrast, ONCache
is the first cross-layer cache within the container overlay net-
work, which considers the extra overhead as a whole and
caches the results once. Consequently, ONCache effectively
eliminates the extra overhead compared to prior works.

3.1 The Cache Definition

ONCache contains three caches on each host, as shown in
Figure 1: the egress cache, the ingress cache, and the filter
cache. These caches are implemented using eBPF Least Re-
cently Used (LRU) hash map, which evicts the least recently
used elements to store new elements when the map is full.

The egress cache stores the outer headers and egress intra-
host routing results, which are invariant for packets destined
to the same container IP address. The routing results include
the new inner MAC header (for L3 routing) and the egress
host interface. To reduce the memory usage of the egress
cache, we divide it into two levels: <container destination IP
address (dIP) → host dIP> and <host dIP → outer headers,
inner MAC header, host interface index>.

The ingress cache stores the ingress intra-host routing re-
sults, which are invariant for packets destined to the same
container IP address. The structure of the ingress cache is
<container dIP → inner MAC header, veth (host-side) index>.

The filter cache stores the filtering decision of each flow
in the established state. Essentially, it functions as a flow
whitelist, recording the allowed flows. By default, a flow is
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lines denotes the redirect path.

defined by the 5-tuple (source IP address, source port, destina-
tion IP address, destination port, and transport protocol). One
may also adjust the flow definition as required, e.g., adding a
DSCP field to support DSCP filters.

In order to minimize cache misses, the capacity of the
caches should be adjusted according to the cluster scale and
concurrent flow number. Consider the largest cluster in Kuber-
netes [60], which has a maximum of 110 containers per host,
5k hosts, and 150k total containers. With up to 1M concurrent
flows per host, to minimize cache misses, the egress/ingress/-
filter cache will take up at most 1.56 MB/2.2 KB/20 MB of
memory space per host, respectively (See Appendix C for
details). This memory usage is negligible in modern servers.

3.2 Cache Initialization
If ONCache encounters a cache miss while trying to forward
a packet, it will pass the packet to the fallback overlay net-
work and try to initialize the cache meanwhile. The cache
initialization process is depicted in Figure 2.

Initialize the Egress Path. When an egress container
packet reaches the veth (host-side), Egress-Prog, which is
hooked here, tries to forward the packet. If either the egress
cache or the filter cache misses for the packet, Egress-Prog
adds a miss mark to the packet. We reserve one bit within
DSCP field of the inner IP header as the miss mark.4 Egress-
Prog then passes the packet to the fallback overlay network.

The fallback overlay network proceeds to forward, filter,
and encapsulate the packet. Besides, we configure the overlay
network to add an est mark to the packet if its flow reaches
the established state. We use another bit in the DSCP field as
the est mark. The aforementioned action only requires either
minor adjustments to two OVS flow rules or the addition of
one rule in netfilter, as detailed in Appendix B.2.

After being processed by the fallback overlay network,
the packet reaches the host interface, where Egress-Init-Prog
checks if the following requirements are met to initialize the

4We reserve 2 bits in total within the inner IP headers’ DSCP field and
require the network not to use these 2 bits for differentiated services.

caches: (1) the packet is a tunneling packet (e.g., a VXLAN
packet); (2) the packet has the miss mark and the est mark.

If all requirements are met, Egress-Init-Prog initializes the
egress cache by storing <container dIP → outer headers,
inner MAC header, host interface index> into the cache. ON-
Cache derives the host interface index from sk_buff struct,
and the other fields from the tunneling packet. Additionally,
the flow is whitelisted in the filter cache. Finally, the packet
is sent out from the host interface.

Initialize the Ingress Path. Upon receiving a tunneling
packet at the host interface, Ingress-Prog, which is hooked
here, queries the cache and tries to forward the packet. If either
the ingress cache or the filter cache misses for the packet,
Ingress-Prog adds the miss mark to the packet and passes it
to the fallback overlay network.

The fallback overlay network proceeds to process the
packet, and add the est mark to the packet if its flow reaches
the established state.

Then the packet reaches the veth (container-side), where
Ingress-Init-Prog checks if the packet has both the miss and
the est mark. If so, the program initializes the cache by storing
<container dIP → inner MAC header> to the ingress cache
and whitelisting the flow in the filter cache. <container dIP
→ veth (host-side) index> in the ingress cache is maintained
by ONCache daemon upon container provisioning.

3.3 Cache-based Fast Path

We present the cache-based fast path of ONCache (Figure 3).
The fast path is designed to be fail-safe and transparent to
both applications and the underlay network. For packets that
cannot be forwarded by the fast path, ONCache passes them
to the fallback overlay network instead of dropping them.

3.3.1 The Egress Fast Path

The egress fast path is implemented by Egress-Prog, which
handles an egress container packet in the following steps:



Step #1: Cache retrieving. Egress-Prog first checks if the
packet’s flow is whitelisted in the filter cache and retrieves
<container dIP → outer headers, inner MAC header, host in-
terface index> from the egress cache. Any cache miss triggers
a cache initialization process, as described in §3.2.

Additionally, Egress-Prog conducts a reverse check by ver-
ifying whether the container source IP address exists in the
ingress cache and if the reverse flow is also whitelisted in the
filter cache. If the reverse check is not satisfied, Egress-Prog
passes the packet to the fallback overlay network. This is
necessary because for a flow, the eviction of caches for two
directions and the expiration of its conntrack entry are asyn-
chronous. Utilizing the fast path only when caches for both
directions are ready ensures that if any cache initialization is
needed, conntrack can observe traffic in both directions and
add est mark to packets, thereby ensuring the success of the
initialization. See a counterexample in Appendix D.

Step #2: Encapsulating and intra-host routing. Having
retrieved the egress cache, Egress-Prog proceeds to rewrite
the inner MAC header and add the outer headers to the packet.
Two modifications on the outer headers are needed: (1) Up-
dating the length, ID, and checksum fields in the outer IP
header, as well as the length field in the outer UDP header;
(2) Calculating the outer UDP source port using the same
hash function employed by the kernel. Finally, Egress-Prog
invokes eBPF helper function bpf_redirect to redirect the
packet to the cached host interface index.

3.3.2 The Ingress Fast Path

The ingress fast path is implemented by Ingress-Prog, which
handles an ingress tunneling packet in the following steps:

Step #1: Destination check. Ingress-Prog first verifies
whether destination MAC and IP addresses of the packet
match with those of current host interface. TTL is also
checked. If the destination check fails, the packet is then
passed to the fallback overlay network for final decision.

Step #2: Cache retrieving. Then, Ingress-Prog checks if
the packet’s flow is whitelisted in the filter cache, and retrieves
<container dIP → inner MAC header, veth (host-side) index>
from the ingress cache. Any cache miss triggers a cache
initialization process. Besides, the reverse check (described
in §3.3.1) is also conducted on the ingress path.

Step #3: Decapsulating and intra-host routing. Ingress-
Prog proceeds to strip the outer headers of the packet, rewrite
the inner MAC header, and redirect the packet to the destina-
tion veth (container-side). The redirection is done by invoking
the eBPF helper function bpf_redirect_peer.

Although the decapsulation of the outer headers is simpli-
fied in ONCache, no functionality is lost. Firstly, the payload
is protected by checksums of the inner headers, which are ver-
ified by the container network stack. Secondly, the reassem-
bly of fragmented packets is conducted by Generic Receive
Offload (GRO) before reaching Ingress-Prog. Moreover, no

other functionalities rely on the outer headers.

3.4 Cache Coherency
An overlay network is subject to change, necessitating ON-
Cache to ensure cache coherency when changes occur. While
container provisioning is inherently handled by cache initial-
ization, ONCache handles other changes by the user space
program, ONCache daemon.

Upon container deletion or unexpected container failures,
ONCache daemon deletes the related caches. This prevents a
new container with an old IP address from mistakenly utiliz-
ing outdated cache entries.

Upon other changes, including container migration or filter
updates, ONCache employs a delete-and-reinitialize mech-
anism with four steps to ensure that the changes take effect
immediately and properly in the fast path: (1) Pausing cache
initialization by disabling OVS or netfilter from adding the est
mark. (2) Removing the cache entries affected by the network
change (the affected packets start using the fallback overlay
network). (3) Applying the network change in the fallback
overlay network (the network change takes effect immedi-
ately). (4) Resuming cache initialization (the cache entries
are reinitialized and the affected packets start using the fast
path again).

3.5 Cache Compatibility
Work with various traffic. ONCache is designed to acceler-
ate inter-host container traffic and is not responsible for other
types of traffic, such as intra-host container traffic, container-
to-host-IP traffic, or container-to-external-IP traffic. These
types of traffic are handled by the fallback overlay network.

The ClusterIP Service [62] in Kubernetes facilitates con-
tainer access to a group of containers providing the same
functionality via a single ClusterIP. Typically, such services
rely on netfilter or IPVS (IP Virtual Server) [33] on the sender
host for load balancing and Destination Network Address
Translation (DNAT). However, ONCache’s fast path bypasses
netfilter and IPVS. Nevertheless, ONCache can support Clus-
terIP akin to Cilium’s approach: implementing load balancing
and DNAT by eBPF programs and maps [14]. This functional-
ity can be integrated in Egress/Ingress-Prog and be compatible
with the cache-based fast path.

Work with data-plane policies. Data-plane policies, such
as rate limiting and quality of service (QoS) seamlessly inte-
grate with ONCache. In Linux, these policies are implemented
by queuing disciplines (qdiscs). ONCache’s fast path does
not bypass the qdiscs of the host interface.

Filters not supported by ONCache. Packet-based filters
that match on the hash of the overlay packet [74] do not exhibit
any invariance property. Besides, while all stateful filters in
netfilter [2], OVS [51], Cilium [15] have an established state,
there may exist stateful filters without an established state.



ONCache does not natively support such filters, because there
is no invariant filter decision that can be cached. Nonetheless,
it is feasible to implement such filters in eBPF case by case.

Work with service meshes. Service meshes are increas-
ingly popular in container clusters such as Kubernetes, pri-
marily deployed for functionalities like security, observability,
and traffic management [63]. The most common implemen-
tations of service meshes employ software proxies called
sidecars [73]. A sidecar is a separate process co-located with
applications within the application network namespace (e.g.,
within a Kubernetes Pod [34]), and still relies on the overlay
network for communication. Hence, ONCache benefits the
communication of sidecar service meshes.

Compatibility with Container Network Interface (CNI).
The current implementation of ONCache is based on TC eBPF.
For CNIs that do not use TC eBPF in their data path, such as
Antrea, Flannel, etc., ONCache can be seamlessly integrated
without requiring any code modifications. Conversely, to use
ONCache with CNIs that already utilize TC eBPF, such as
Cilium, Calico, we need to reimplement ONCache within
either the CNI’s eBPF programs or the kernel source code.

Container live migration. ONCache is compatible with
container live migration [19, 45]. With proper control plane
operations (see §3.4), the container connections can be well-
maintained. In contrast, Slim only supports cold migra-
tion [74], as its container connections are established on the
host and become invalid after migration, disrupting the appli-
cations inside the containers.

Network debugging. ONCache supports ICMP, thereby
enabling common debugging tools such as ping and tracer-
oute. Users can also utilize tools like bpftool [6] to debug
ONCache’s eBPF programs and maps. Debugging with ON-
Cache is easy and convenient. In contrast, debugging with
Slim is much harder. Slim lacks support for ICMP, and there
also lacks debug tools for its socket replacement mechanism.

Moreover, ONCache is compatible with Linux techniques
such as segmentation offload [61], checksum offload [10], and
scaling techniques [59]. See Appendix E for details.

3.6 Optional Improvements
We introduce two optional improvements for the fast path.
Unlike the default design of ONCache, these optional im-
provements require either kernel or protocol modifications.

Optimizing the redirect data path. ONCache uses
bpf_redirect and bpf_redirect_peer to redirect packets
on the egress and ingress path, respectively. As shown in Fig-
ure 4 (a), the two redirect functions are asymmetric, and the
egress redirect path fails to eliminate the namespaces travers-
ing overhead. Our speculation is that a symmetric egress
redirect (Figure 4 (b)) requires hooking networking eBPF
programs in container namespaces, which may conflict with
user applications. Nevertheless, we are still curious about the
potential benefit of optimizing the egress redirect data path.
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Figure 4: The fast path in (a) ONCache without rpeer; (b)
ONCache with rpeer.

We design and implement a new eBPF redirect function in
the Linux kernel, called bpf_redirect_rpeer. It provides a
reversed path compared to bpf_redirect_peer, redirecting
packets from the egress port of the veth (container-side) to the
egress port of the host interface, as depicted in Figure 4 (b). By
leveraging bpf_redirect_rpeer, the hook point of Egress-
Prog changes to TC egress of the veth (container-side), en-
abling ONCache to further mitigate the namespaces traversing
overhead on the egress path.

Optimizing the tunneling protocol. Traditional tunneling
protocols like VXLAN introduce transmission overhead due
to the outer headers, typically tens of bytes (e.g., 50 bytes
for VXLAN). To eliminate this transmission overhead, we
propose and implement a rewriting-based tunneling protocol.

With the new tunneling protocol, the fast path of ON-
Cache works as below: (1) Egress-Prog modifies container
source/destination IP/MAC addresses of an egress container
packet to the host ones and writes a restore key to an idle field
(e.g., DSCP) of the packet. Then the packet is redirected to the
underlay network. (2) Ingress-Prog restores all the addresses
to their original values according to the restore key and redi-
rect the packet to the destination container. The mapping
between the restore key and the container source/destination
IP/MAC addresses is cached during cache initialization. See
Appendix F for more detail.

4 Evaluation

We evaluate ONCache (without optional improvements by de-
fault) with microbenchmarks in §4.1 and popular distributed
applications in §4.2. In both sections, ONCache’s perfor-
mance can be further improved by the optional improvements,
at the cost of kernel/protocol modification. ONCache with
optional improvements is evaluated in §4.3.

Our testbed is built on top of a base Kubernetes [35] cluster
(v1.23.6), including API server, placement engine, etcd, etc.
We run the experiments on Cloudlab [23] with three c6525-
100g nodes, each equipped with an AMD EPYC 7402P 24-
core processor@2.80 GHz. The processor uses hyperthread-
ing. Each machine has 128 GB ECC memory and a dual-
port Mellanox ConnectX-5 Ex 100 Gb interface. We do not



1 2 4 8 16 32
(a) TCP Throughput (# Flows)

10

20

30

G
bp

s

1 2 4 8 16 32
(b) TCP Tpt CPU (# Flows)

0.5

1.0

1.5

Vi
rtu

al
 C

or
es

1 2 4 8 16 32
(c) TCP RR (# Flows)

20

25

30

35

kR
eq

ue
st

s/
s

1 2 4 8 16 32
(d) TCP RR CPU (# Flows)

0.3

0.4

0.5

0.6

Vi
rtu

al
 C

or
es

1 2 4 8 16 32
(e) UDP Throughput (# Flows)

5

10

15

G
bp

s

1 2 4 8 16 32
(f) UDP Tpt CPU (# Flows)

0.2

0.4

0.6

0.8

1.0

Vi
rtu

al
 C

or
es

1 2 4 8 16 32
(g) UDP RR (# Flows)

20

25

30

35

kR
eq

ue
st

s/
s

1 2 4 8 16 32
(h) UDP RR CPU (# Flows)

0.3

0.4

0.5

0.6

Vi
rtu

al
 C

or
es

Bare Metal Slim (only supports TCP) Falcon ONCache Antrea Cilium

Figure 5: TCP and UDP microbenchmark results of bare metal, Slim (only supports TCP), Falcon (Linux kernel v5.4), ONCache,
Antrea and Cilium. Both Cilium and Antrea provide standard overlay networks. All data is the average of a single flow. CPU
utilization is measured on the receiver host, normalized by throughput or RR, and scaled to Antrea’s throughput or RR.
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Figure 6: (a) The Connect-Request-Response (CRR) rate of
different networks. The higher the better. Error bars denote
standard deviations. (b) iperf3 throughput for the functional
completeness experiments.

change Cloudlab’s default configurations of segmentation of-
fload [61], checksum offload [10], and scaling techniques [59].
We use Ubuntu 20.04 with Linux kernel version 5.14. ON-
Cache is deployed as a plugin of the Antrea (encap mode).

4.1 Microbenchmarks
4.1.1 Throughput and Latency

We utilize iperf3 [32] to measure throughput and netperf [48]
to measure Request-Response (RR) transaction rate. The RR
test measures the rate of one-byte round-trips performed se-
quentially over a connection, wherein a higher transaction rate
indicates lower end-to-end latency. We measure CPU utiliza-
tion on the receiver host in all experiments using mpstat [46].
Both TCP and UDP tests are executed.

In all settings, we conduct parallel tests. Multiple container
pairs are deployed on a pair of hosts, with all server containers
residing on one host and all client containers on the other.
Each container pair starts testing simultaneously, enabling the
evaluation of ONCache’s parallel performance.

To represent performance of standard overlay networks,
which serves as baseline, we select the most widely used
CNIs, Antrea [1] and Cilium [13]. We take bare metal as
upper bound for overlay networks. To compare ONCache with

prior works discussed in §2.3, we conduct microbenchmarks
on Slim5 and Falcon, which represent the ideas of socket
replacement and CPU load balancing, respectively.

TCP microbenchmarks. ONCache significantly improves
both throughput and RR performance while consuming less
CPU resource. The per-flow throughput, RR, and CPU uti-
lization results are shown in Figure 5 (a) – (d).

Compared to Antrea, ONCache improves TCP throughput
by 11.53% and 13.96% in 1 and 2-parallel tests. In 4, 8, 16,
and 32-parallel tests, all container networks saturate the 100
Gb physical network. ONCache reduces per-byte CPU uti-
lization by 13.94% - 34.87% in different parallel tests. The
throughput and CPU utilization of ONCache are very close to
those of Slim and bare metal. The throughput of Falcon (only
provides implementation in the kernel v5.4) is significantly
lower. The reason is that the kernel v5.4 inherently exhibits
lower bandwidth compared to the kernel v5.14 in our testbed.

RR performance of ONCache in all parallel tests outper-
forms Antrea by 35.81% to 40.91%, with a decrease in per-RR
CPU utilization ranging from 26.02% to 32.03%. The RR
results of ONCache exhibit a slight gap to those of Slim. Over-
head, including egress namespace traversing, eBPF execution,
and outer headers MTU overhead, contributes to this gap and
can be mitigated by the optional improvements proposed in
§3.6. As the RR test does not overwhelm any CPU cores,
Falcon only slightly improves the RR results6.

UDP microbenchmarks. In contrast to Slim, ONCache
also benefits UDP traffic, as shown in Figure 5 (e) – (h). UDP
throughput of ONCache is 19.68% - 31.76% higher than
Antrea in 1, 2, 4, 8-parallel tests. In 16 and 32-parallel tests,
the throughput remains the same due to bandwidth bottle-
neck. Moreover, per-byte CPU utilization is lower by 29.73%
- 47.98% in all tests. The throughput gap between ONCache

5Slim does not support UDP, only the TCP microbenchmark is performed.
6In our testbed, the kernel version does not affect RR results.
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Figure 7: The evaluation results of applications. Figures in each row present: the latency, the transaction rate (TPS) of all clients,
and the CPU utilization of the client (left bar) & the server (right bar). To ensure a fair comparison, we normalize the CPU
utilization by TPS and scale it to Antrea’s TPS. Softirq stands for software interrupt request.

and bare metal is less than 6%.
ONCache improves UDP RR performance by 34.13% -

39.12% in all tests, with per-RR CPU utilization reduced by
27.54% - 31.59%. There is also a small gap to Slim caused
by the same reasons as in the TCP RR experiments.

Overhead quantifying. We quantify ONCache’s over-
head by the method proposed in §2.2 and present the results
in Table 2. As expected, ONCache eliminates all the extra
overhead, except for egress namespaces traversing overhead,
which is addressed by bpf_redirect_rpeer proposed in
§3.6. Although incurring eBPF execution overhead, ONCache
still contributes to a significant reduction in overall network
stack latency. The quantitative analysis aligns consistently
with the microbenchmark results previously presented.

4.1.2 Cache Overhead

Cache initialization. We use netperf’s Connect-Request-
Response (CRR) test to measure TCP connection setup time
and show the cache initialization overhead. In CRR, each
RR transaction needs a new TCP connection, which requires
additional cache initialization.

The CRR results are shown in Figure 6 (a). ONCache is
better than Antrea but worse than bare metal. This is because
ONCache relies on Antrea to handle the first 3 packets before
caches are initialized. ONCache performs the same as Antrea
in this part. Then the round trip of 1 byte (Request-Response
part) goes through the fast path, which performs better than
Antrea. Falcon does not benefit CRR compared to Antrea due
to the same reason as in TCP RR. Slim performs significantly

worse because it needs to first establish an overlay connection
for service discovery, which incurs several extra RTTs.

Cache interference. We conduct an iperf3 test concur-
rently with continuous cache entry updates to show potential
cache interference overhead. In this experiment, all cache
capacities are set to 512, and the cache replacement policy is
LRU. We use a script to continually insert 1000 redundant
cache entries to the egress cache and subsequently delete them
for 2 rounds. The test consumes about 8 seconds. As shown
in the first 8 seconds of Figure 6 (b), the iperf3 flow exhibits
no significant throughput fluctuation.

Cache scalability. We conduct a TCP RR test with a full
egress cache containing 150,000 entries (for the largest Ku-
bernetes cluster as mentioned in §3.1). As expected, the RR
performance remains unaffected, showcasing the inherent
scalability of hash maps.

4.1.3 Functional Completeness

Data-plane policies. We test whether data-plane policies,
such as rate limiting, function correctly with ONCache. As
shown in Figure 6 (b), in the absence of rate limiting, the
throughput reaches about 39 Gbps. Then we limit the rate to
20 Gbps on the host interface and the throughput drops to
about 18.5 Gbps. Upon removal of the rate limit, the through-
put returns to its original level.

Packet filters. We test whether packet filters work properly
with ONCache. During an iperf3 test with ONCache, we apply
a simple packet filter which denies this iperf3 flow using
the delete-and-reinitialize mechanism proposed in §3.4. As
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Figure 8: TCP and UDP microbenchmark results of bare metal, ONCache with redirect rpeer (ONCache-r), ONCache with
rewriting-based tunneling protocol (ONCache-t), ONCache with both (ONCache-t-r), and ONCache with neither (ONCache).
The CPU utilization is normalized by throughput or RR and scaled to bare metal’s throughput or RR.

expected, the throughput drops to 0, as shown in Figure 6 (b).
The throughput recovers upon removing the filter.

Container live migration. We evaluate whether ONCache
works properly with container live migration. Since Kuber-
netes does not natively support live migration, we imitate it
by modifying the host IP address and VXLAN tunnels while
the container remains alive. As shown in Figure 6 (b), the
throughput drops to 0 when migration starts (the host IP ad-
dress is changed) and recovers once the migration finishes
(VXLAN tunnels are updated) after about 2 seconds.

Both the packet filter and container live migration experi-
ments induce network changes and require using the delete-
and-reinitialize mechanism (proposed in §3.4) to apply the
changes. Thus these experiments also demonstrate the effec-
tiveness of the delete-and-reinitialize mechanism.

4.2 Applications
We evaluate ONCache on three real-world applications: in-
memory key-value store Memcached [42], database Post-
greSQL [55], and web server Nginx [50]. We take Antrea
as performance baseline and Docker host network [21] as up-
per bound. Falcon is also evaluated. As Slim’s performance is
akin to that of the host network, it is omitted from this section.
Notably, Slim only supports TCP, limiting its compatibility.

Memcached. We deploy a pair of containers on two
hosts. One container runs a Memcached [42] server (v1.6),
while the other runs a standard Memcached benchmark tool
memtier [43] (v2.0.0) as a client. Upon the start of the experi-
ment, the client spawns 4 threads, with each thread starting
50 connections. The ratio of SET and GET requests is 1:10.
Memtier runs as fast as possible. We record CPU utilization
by mpstat on both hosts during the experiment.

ONCache achieves much lower latency and higher trans-
action rate than Antrea. Figure 7 (a) is the CDF graph of
the latency of GET requests. The average latency is reduced

by 22.71%, while the 99.9 percentile latency is reduced by
27.69%. The latency gap relative to the host network is within
6%. The transaction rates are shown in Figure 7 (b). ONCache
outperforms Antrea by 27.83%, while has a 7% gap compared
to the host network.

ONCache also significantly reduces per-transaction CPU
utilization, as shown in Figure 7 (c). The per-transaction CPU
utilization of ONCache is 38.91% and 40.98% lower on the
client and the server, respectively. The utilization remains
4.09% and 6.62% higher than that in the host network.

PostgreSQL. We deploy a PostgreSQL database [55]
(v15.3) and its benchmark tool, pgbench [54], on a pair of
containers on different hosts. Pgbench implements the TPC-B
benchmark, creating a database with 5 million banking ac-
counts and executing 50 clients concurrently. Pgbench runs
as fast as possible. We measure CPU utilization by mpstat.

ONCache benefits PostgreSQL’s latency and transaction
rate, as shown in Figure 7 (d)(e). Compare to Antrea, ON-
Cache reduces the average latency by 22.34% and the transac-
tion rate by 29.40%, while having a gap of 2.30% and 2.54%
to the host network, respectively. ONCache also reduces CPU
utilization, as shown in Figure 7 (f). The per-transaction CPU
utilization is reduced by 51.84% and 7.26% for the client and
the server, respectively. The reduction of the server is smaller
due to relative high user CPU utilization. ONCache reduces
soft interrupt utilization on the server by 27.36%.

Nginx. To evaluate performance of HTTP servers, we con-
duct load tests on HTTP/1.1 and HTTP/3 [57], representing
TCP-based and UDP-based HTTP, respectively. SSL is dis-
abled for HTTP/1.1 and enabled for HTTP/3. We employ
Nginx [50] (v1.25.1) and h2load [30] (v1.55.1) in the experi-
ment. H2load runs 100 clients for HTTP/1.1 and 10 clients for
HTTP/3. Each client issues 2 concurrent streams and requests
a 1 KB file from the server. H2load runs as fast as possible.

ONCache improves latency and transaction rate for
HTTP/1.1, as shown in Figure 7 (g) and (h). ONCache re-



duces HTTP/1.1 request latency by 21.53% and improves the
transaction rate by 27.43%. There remains a performance
gap between ONCache and the host network (15.04% for
latency and 13.12% for transaction rate). The gap is caused
by the same reason as analyzed in TCP RR, as the transac-
tion rate is high enough to expose overhead. For HTTP/3,
the performance is notably poorer and remains consistent
across different networks, as shown in Figure 7 (j) and (k).
This could potentially be attributed to the experimental QUIC
support of Nginx [26].

ONCache reduces per-transaction CPU utilization for both
HTTP/1.1 and HTTP/3, as shown in Figure 7 (i) and (l). For
HTTP/1.1, CPU utilization is reduced by 56.26% for the
client and 43.52% for the server. For HTTP/3, the reduction is
11.80% and 26.76% for the client and the server, respectively.

4.3 Evaluation for Optional Improvements
We evaluate ONCache with redirect rpeer (ONCache-r),
rewriting-based tunneling protocol (ONCache-t), and both
of them (ONCache-t-r) by the methods described in §4.1. The
results are shown in Figure 8. The baseline in this section is
ONCache without the optional improvements.

The optional improvements benefit RR transaction rate,
as shown in Figure 8 (c)(g). ONCache-t, ONCache-r, and
ONCache-t-r improve 1-parallel TCP RR performance by
1.96%, 0.97%, and 3.08%, respectively (2.04%, 2.43%, and
5.87% for UDP). For multi-parallel tests, the optional im-
provements also benefit RR performance. ONCache-t-r pro-
vides the most improvement in RR performance, nearly equal-
ing the sum of those of ONCache-t and ONCache-r, and
achieves nearly the same RR performance as Slim.

The optional improvements generally reduce CPU utiliza-
tion, as shown in Figure 8 (b)(d)(f)(h). The CPU utilization
reduction varies across different experiments, due to noise
from other processes in the system.

We also evaluate the optional improvements with the appli-
cations used in §4.2. The results are presented in Appendix G.

5 Discussion

Why using TC hook? There are two main types of eBPF
hooks for networking: XDP and TC [5]. Compared to XDP,
TC eBPF programs do not require driver support, can redirect
packets with lower overhead, are compatible with Linux traffic
control (tc) module, and can be hooked on both ingress and
egress ports. Therefore, TC is a better choice for ONCache.

Security of eBPF-based ONCache. Only processes that
run by privileged user (root) or have the capability CAP_BPF
can load eBPF programs and read/write eBPF maps, unless
the privileged user enables unprivileged eBPF [25]7. Thus,

7Although there are userspace eBPF implementations [68] that do not
necessitate the privilege at all, they execute eBPF programs in userspace and
differ from the eBPF adopted by ONCache.

the eBPF components of ONCache are protected by the eBPF
permission control. Additionally, ONCache’s fast path resides
in kernel mode and is inaccessible from applications. In con-
trast, Slim has serious security issues because it exposes host
namespace file descriptors to containers, thereby breaking
resource isolation provided by Linux namespaces. Slim’s ker-
nel module could mitigate the security issues, but resource
isolation is still undermined.

6 Related Works

Cache in network virtualization. OVS [53, 58] employs a
cache to accelerate flow matching. However, as analyzed in
§2.2, there is still significant extra overhead in overlay net-
works. Andromeda [20], a VM cluster network virtualization
stack, maintains a cache of routing and filtering decisions,
sharing a similar idea with OVS. Nevertheless, none of the
prior works quantify container overlay networks and employ
a cross-layer cache to bridge the performance gap between
container overlay networks and bare metal, as ONCache does.

eBPF-based container networks. ONCache differs sig-
nificantly from existing eBPF-based container networks like
Cilium [13] and Calico [7]. For example, in Cilium, the eBPF-
based data path aims to replace netfilter in the host network
stack with eBPF programs and is effective where container
packets are directly forwarded to underlay network [17]. How-
ever, as analyzed in §2.2, Cilium fails to improve overlay
networks and the extra overhead still exists. In contrast, ON-
Cache aims to eliminate the extra overhead with the proposed
cache, as shown in Table 2.

Service mesh sidecar optimization. While a sidecar sim-
plifies traffic management, policy enforcement, network se-
curity, etc., it incurs significant overhead. Zhu et al. [73] pro-
posed MeshInsight to quantify the overhead of service mesh
sidecars, and works such as SPRIGHT [56], mRPC [11] opti-
mize sidecars by different mechanisms. However, these works
focus on optimizing the overall intra-host service mesh archi-
tecture, rather than the inter-host container communication.

7 Conclusion

We design and implement ONCache, a cache-based container
overlay network that effectively narrows the performance
gap between bare metal and overlay networks without losing
flexibility and compatibility. In both microbenchmark and
application experiments, ONCache significantly outperforms
standard overlay networks in terms of throughput and latency
while reducing CPU utilization. ONCache can be seamlessly
integrated with existing CNIs such as Antrea, Flannel, etc.
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A Quantitatively Analyzing Network Stacks

In this section, we describe how we quantitatively analyze net-
work stacks. We analyze the overhead incurred during the ex-
ecution of a 1-byte TCP RR test conducted using NPtcp [49].

Firstly, we perform a qualitative analysis of overhead in
different data paths with two steps: (1) Utilizing the perf
tool [52], we profile network stack functions for a duration of
10 seconds and subsequently employ a flame graph genera-
tor [27] to generate flame graphs. (2) According to the flame
graphs, we classify network stack functions into different seg-
ments of the overhead, e.g., the application network stack,
OVS, etc.

Next, we time the network stack functions using eBPF
one by one. As the network stack functions may execute in
both the application network stack and the VXLAN network
stack, we need to distinguish them by their call stacks. We
implement two eBPF programs leveraging the BPF Compiler
Collection (BCC) [3] tool. These programs are hooked to
kprobes and kretprobes hook points, executing at the entry
and return points of each specific function, respectively. They
capture the current call stack along with the timestamp, and
store the function (with the call stack) and its execution time in
an eBPF map. For each function, we record all the execution
time samples within one second and compute the average of
these samples, which serves as the final result, as shown in
Table 2.

B The Core Code of ONCache

In this section, we present core code of ONCache’s eBPF
programs to help to understand the design of ONCache.

B.1 The Local Cache Definition

The code in this section implements functionalities that are
described in §3.1.

The egress cache:

1 struct egressinfo {
2 unsigned char outer_header[64];
3 __u32 ifidx;
4 };
5 struct bpf_elf_map SEC("maps") egressip_cache = {
6 .type = BPF_MAP_TYPE_LRU_HASH,
7 .size_key = sizeof(__be32),
8 .size_value = sizeof(__be32),
9 .pinning = PIN_GLOBAL_NS,

10 .max_elem = 4096
11 };
12 struct bpf_elf_map SEC("maps") egress_cache = {
13 .type = BPF_MAP_TYPE_LRU_HASH,
14 .size_key = sizeof(__be32),
15 .size_value = sizeof(struct egressinfo),
16 .pinning = PIN_GLOBAL_NS,
17 .max_elem = 1024,
18 };

The ingress cache.

1 struct ingressinfo {
2 __u32 ifidx;
3 unsigned char dmac[ETH_ALEN];
4 unsigned char smac[ETH_ALEN];
5 };
6 struct bpf_elf_map SEC("maps") ingress_cache = {
7 .type = BPF_MAP_TYPE_LRU_HASH,
8 .size_key = sizeof(__be32),
9 .size_value = sizeof(struct ingressinfo),

10 .pinning = PIN_GLOBAL_NS,
11 .max_elem = 1024,
12 };

The filter cache.

1 struct action {
2 __u16 ingress;
3 __u16 egress;
4 };
5 struct bpf_elf_map SEC("maps") filter_cache = {
6 .type = BPF_MAP_TYPE_LRU_HASH,
7 .size_key = sizeof(struct fivetuple),
8 .size_value = sizeof(struct action),
9 .pinning = PIN_GLOBAL_NS,

10 .max_elem = 4096,
11 };

B.2 Cache Initialization
The code in this section implements functionalities that are
described in §3.2.

Initialize the Egress Path. TC_ACT_OK indicates the kernel
to proceed with the usual packet processing. ONCache uses
TC_ACT_OK to pass the packet to the fallback overlay network.

1 // Checks if miss and est marked.
2 if ((inner_iph->tos & 0xc) != 0xc) return TC_ACT_OK;
3 // Update filter cache
4 struct fivetuple tuple_;
5 if (parse_5tuple_e(inner_iph, data_end, &tuple_)) return

TC_ACT_OK;
6 struct action eaction_ = {
7 .egress = 1,
8 .ingress = 0
9 };

10 if(bpf_map_update_elem(&filter_cache, &tuple_, &eaction_,
BPF_NOEXIST)) {

11 struct action* action_ =
bpf_map_lookup_elem(&filter_cache, &tuple_);

12 if (action_) action_->egress = 1;
13 }
14 // Update egress cache
15 struct egressinfo egressinfo_;
16 initegressinfo(&egressinfo_, skb);
17 if(bpf_map_update_elem(&egress_cache, &outer_iph->daddr,

&egressinfo_, BPF_NOEXIST))
18 return TC_ACT_OK;
19 if(bpf_map_update_elem(&egressip_cache, &inner_iph->daddr,

&outer_iph->daddr, BPF_NOEXIST))
20 return TC_ACT_OK;
21 // Erase the TOS mark.
22 set_ip_tos(skb, 50, 0);



Figure 9: Parts of OVS flows in Antrea. The action that we
introduce is highlighted in red font, through which we set a
predefined DSCP bit to 1 if the flow reaches established state.

Initialize the Ingress Path.

1 // Checks if miss and est marked.
2 if ((iphdr->tos & 0xc) != 0xc) return TC_ACT_OK;
3 // Update ingress cache
4 struct ingressinfo* ingressinfo_ =

bpf_map_lookup_elem(&ingress_cache, &iphdr->daddr);
5 if (!ingressinfo_) {
6 return TC_ACT_OK;
7 } else {
8 __builtin_memcpy(ingressinfo_->dmac, eth->h_dest,

ETH_ALEN);
9 __builtin_memcpy(ingressinfo_->smac, eth->h_source,

ETH_ALEN);
10 }
11 // Update filter cache
12 struct fivetuple tuple_;
13 if (parse_5tuple_in(iphdr, data_end, &tuple_)) return

TC_ACT_OK;
14 struct action eaction_ = {
15 .egress = 0,
16 .ingress = 1
17 };
18 if(bpf_map_update_elem(&filter_cache, &tuple_, &eaction_,

BPF_NOEXIST)) {
19 struct action* action_ =

bpf_map_lookup_elem(&filter_cache, &tuple_);
20 if (action_) action_->ingress = 1;
21 }
22 // Erase the TOS mark.
23 set_ip_tos(skb, 0, 0);

Extra configuration on OVS or netfilter. The addition of
the est mark can be realized through either OVS or netfilter.

For OVS, this action requires modifying two OVS flows, as
shown in Figure 9. Originally, the two flows are intended for
forwarding non-new-state tracked packets. We utilize them to
add the est mark to packets meanwhile. The actions that we
introduce are highlighted in red font, through which we set a
predefined DSCP bit to 1 if the flow reaches established state.

Alternatively, this action can be independently realized by
adding a new rule in netfilter as follows.

1 iptables -t mangle -A FORWARD -m conntrack --ctstate
ESTABLISHED -m dscp --dscp 0x1 -j DSCP --set-dscp 0x3

B.3 Cache-based Fast Path
The code in this section implements functionalities that are
described in §3.3.

B.3.1 The Egress Data Path

Step #1: Cache retrieving.

1 struct fivetuple tuple_;
2 if (parse_5tuple_e(iphdr, data_end, &tuple_)) return

TC_ACT_OK;
3 struct action *action_ =

bpf_map_lookup_elem(&filter_cache, &tuple_);
4 if (!action_ || !(action_->ingress & action_->egress)) {
5 set_ip_tos(skb, 0, 0x4);
6 return TC_ACT_OK;
7 }
8 __be32* nodeip_ = bpf_map_lookup_elem(&egressip_cache,

&iphdr->daddr);
9 if (!nodeip_) {

10 // TOS 0x4 is used as miss mark
11 set_ip_tos(skb, 0, 0x4);
12 return TC_ACT_OK;
13 }
14 struct egressinfo* egressinfo_ =

bpf_map_lookup_elem(&egress_cache, nodeip_);
15 if (!egressinfo_) {
16 set_ip_tos(skb, 0, 0x4);
17 return TC_ACT_OK;
18 }
19 struct ingressinfo* ingressinfo_ =

bpf_map_lookup_elem(&ingress_cache, &iphdr->saddr);
20 if (!ingressinfo_ || !ingressinfo_complete(ingressinfo_))
21 return TC_ACT_OK;

Step #2: Encapsulating and intra-host routing.

1 // Prepend the outer headers
2 if (bpf_skb_adjust_room(skb, 50, BPF_ADJ_ROOM_MAC,

BPF_F_ADJ_ROOM_FIXED_GSO |
BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 |
BPF_F_ADJ_ROOM_ENCAP_L4_UDP|
BPF_F_ADJ_ROOM_ENCAP_L2(14)|
BPF_F_ADJ_ROOM_ENCAP_L2_ETH)))

3 return TC_ACT_OK;
4 // Boundary check
5 ...
6 // Headers includes 50B of outer hdr and 14B inner MAC hdr.
7 __builtin_memcpy(data, egressinfo_->headers, 64);
8 set_lengthandid(skb, skb->len);
9 // Set the UDP source port

10 __u32 hash = bpf_get_hash_recalc(skb);
11 __be16 sport = get_udpsport(hash);
12 bpf_skb_store_bytes(skb, UDP_PORT_OFF, &sport,

sizeof(sport), 0);
13 // Packet redirecting
14 action = bpf_redirect(egressinfo_->ifidx, 0);
15 return action;

B.3.2 The Ingress Data Path

Step #1: Destination check.



1 struct bpf_elf_map SEC("maps") devmap = {
2 .type = BPF_MAP_TYPE_HASH,
3 .size_key = sizeof(int),
4 .size_value = sizeof(struct devinfo),
5 .pinning = PIN_GLOBAL_NS,
6 .max_elem = 8,
7 };
8

9 struct ethhdr *outer_eth = data;
10 int ifindex = ctx->ifindex;
11 struct devinfo *devinfo_ = bpf_map_lookup_elem(&devmap,

&ifindex);
12 if (!devinfo_ || maccmp(outer_eth->h_dest, devinfo_->mac,

ETH_ALEN)) return TC_ACT_OK;
13 // Check if Ethernet frame has IP packet and set IP hdr ptr
14 if (outer_eth->h_proto != bpf_htons(ETH_P_IP)) return

TC_ACT_OK;
15 struct iphdr *outer_iph = (struct iphdr *)(outer_eth + 1);
16 if (outer_iph->daddr != devinfo_->ip) return TC_ACT_OK;

Step #2: Cache retrieving.

1 struct fivetuple tuple_;
2 if (parse_5tuple_in(inner_iph, data_end, &tuple_)) return

TC_ACT_OK;
3 struct action *action_ =

bpf_map_lookup_elem(&filter_cache, &tuple_);
4 if (!action_ || !(action_->ingress & action_->egress)) {
5 set_ip_tos(skb, 50, 0x4);
6 return TC_ACT_OK;
7 }
8 struct ingressinfo* ingressinfo_ =

bpf_map_lookup_elem(&ingress_cache,
&inner_iph->daddr);

9 if (!ingressinfo_ || !ingressinfo_complete(ingressinfo_)) {
10 set_ip_tos(skb, 50, 0x4);
11 return TC_ACT_OK;
12 }
13 if (!bpf_map_lookup_elem(&egressip_cache,

&inner_iph->saddr)) return TC_ACT_OK;

Step #3: Decapsulating and intra-host routing.

1 if (bpf_skb_adjust_room(ctx, -50, BPF_ADJ_ROOM_MAC, 0))
return TC_ACT_OK;

2 // Boundary check
3 ...
4 // Set new MAC
5 struct ethhdr *eth = data;
6 __builtin_memcpy(eth->h_dest, ingressinfo_->dmac,

ETH_ALEN);
7 __builtin_memcpy(eth->h_source, ingressinfo_->smac,

ETH_ALEN);
8 // Packet redirecting
9 action = bpf_redirect_peer(ingressinfo_->ifidx, 0);

10 return action;

C Calculation of the Maps Size

As per the cache definitions described in §3.1, the sizes of
cache entries are specified as below: 8 bytes for the egress
cache (first level), 72 bytes for the egress cache (second level),
20 bytes for the ingress cache, and 20 bytes for the filter cache.

To eliminate cache eviction by the LRU mechanism for a
cluster with a maximum of 110 containers per host, 5k hosts,
150k total containers, and up to 1M concurrent flows per host,
we need the egress cache (first level) to have 150k entries,
the egress cache (second level) to have 5k entries, the ingress
cache to have 110 entries, and the filter cache to have 1M
entries.

Consequently, the sizes of the caches can be calculated as
follows: the egress cache is 8 B * 150k + 72 B * 5k = 1.56
MB, the ingress cache is 20 * 110 = 2.2 KB, and the filter
cache is 20 B * 1M = 20 MB.

D An Example to Understand Necessity of Re-
verse Check

We further use a counterexample to show the necessity of
reverse check.

Let’s consider a scenario where ONCache only checks the
egress cache on the egress data path. Initially, flow f enters
the established state in conntrack, and all caches for f are
initialized. Consequently, all packets of flow f go through
ONCache’s fast path. However, since flow f bypasses the
conntrack module in the fallback overlay network, its con-
ntrack entry eventually expires after a predefined duration.
Subsequently, if flow f is evicted from the ingress cache by
LRU mechanism, it can still leverage the egress fast path but
becomes ineligible for the ingress fast path. Ideally, we en-
vision ONCache to reinitialize the ingress cache for flow f .
But unfortunately, flow f cannot re-enter the established state
in conntrack because conntrack records a flow as established
only upon observing packets in both directions [2]. Conse-
quently, the ingress cache for flow f can never be reinitialized
and flow f can no longer utilize the ingress fast path.

E Compatibility Discussions

Segmentation offloads. Segmentation offloads, such as
Generic Segmentation Offload (GSO) and Generic Receive
Offload (GRO) [61], enable network interfaces to segment
and reassemble packets. The hooking points of all ONCache
eBPF programs are TC. On the egress path, GSO happens
after TC [5]. Thus GSO and other hardware segmentation
mechanisms of the host interface are not bypassed by the
fast path. On the ingress path, GRO happens prior to TC [5],
posing no conflicts with ONCache. Hence, ONCache is com-
patible with segmentation offload techniques.

Scaling techniques. Linux scaling techniques, including
Receive Packet Steering (RPS) and Receive Flow Steering
(RFS) (and their hardware counterparts Receive Side Scaling
(RSS) and Accelerated RFS (aRFS)) [59], employ different
CPU load balancing strategies on the ingress data path. They
are all compatible with ONCache: RSS and aRFS are hard-
ware mechanisms; RPS and RFS are in software but happen
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Figure 10: The changes of a container packet forwarded by
ONCache with the rewriting-based tunneling protocol. (a)
The original packet from containers. (b) The masqueraded
packet. (c) The restored packet.

before Ingress-Prog on the ingress path.
Checksum offloads. Checksum offloads, including trans-

mitting and receiving checksum offload [10], are often en-
abled to reduce checksum overhead. As they are hardware
mechanisms, ONCache is compatible with them.

F Rewriting-based Tunneling Protocol

This section describes how the rewriting-based tunneling pro-
tocol works in ONCache.

The rewriting-based tunneling protocol operates by substi-
tuting the encapsulation of outer headers in traditional tun-
neling protocols, with the rewriting of inner headers. The
modifications to packet headers along the data path are de-
picted in Figure 10.

New caches. The egress and ingress caches are redesigned
to accommodate the rewriting-based tunneling protocol.

The egress cache stores data used on the egress path, struc-
tured as <container sdIP → host interface index, host sdIP,
host sdMAC, restore key>8.

The ingress cache stores data used on the ingress path,
structured as <host sIP & restore key → veth (host-side) in-
dex, container sdIP, container dMAC>. To accommodate the
new initialization process described later, the ingress cache is
divided into two maps. The first is the ingressIP cache: <host
sIP & restore key → container sdIP>, while the second is
the ingress cache: <container dIP → container dMAC, veth
(host-side) index>.

The new packet journey. On the sender host, Egress-
Prog retrieves <container sdIP → host interface index, host
sdIP, host sdMAC, restore key> from the egress cache. Sub-
sequently, Egress-Prog conducts the masquerading process
by modifying the container source/destination MAC/IP ad-
dresses to those of the host.

To ensure the masqueraded packet can be restored on the
receiver host, ONCache additionally writes a restore key to

8sIP = source IP address; dIP = destination IP address. Similarly, for
sMAC, dMAC, sdIP, and sdMAC.

the packet. Then the receiver host utilizes the restore key in
conjunction with the host IP addresses to restore container
source/destination MAC/IP addresses. The restore key is al-
located during cache initialization and is stored in the egress
cache. The user has the flexibility to designate a specific field
to accommodate the restore key within the packet. This field
can be any available field in the IP header, such as ID, DSCP,
or Option. The capacity of the restore key depends on the
width of the chosen field. After writing the restore key to the
packet, referred to as the masqueraded packet, Egress-Prog
redirects it to the host interface using either bpf_redirect
or bpf_redirect_rpeer.

On the receiver host, Ingress-Prog restores the masqueraded
packet. Ingress-Prog retrieves <host sIP & restore key → veth
(host-side) index, container sdIP, container dMAC> from the
ingress cache, and writes the container IP and MAC addresses
back to the headers. After restoring, the packet is redirected
to the destination veth using bpf_redirect_peer.

The new cache initialization. The initialization for MAC
and IP addresses, as well as interface indexes, remains akin to
the original design (as described in §3.2), and the allocation
of the restore key is newly added. The restore key is allocated
on the receiver host and subsequently delivered to the sender
host. This ensures that the masquerading operation utilizes
the restore key only after the receiver host recognizes it. The
initialization of the filter cache is the same as that described in
§3.2 and is therefore omitted in this section. ONCache utilizes
a round-trip of tunneling packets to initialize the cache. The
process is shown in Figure 11 and encompasses four steps:

Step #1 (tagged in Figure 11 ①): Upon encountering a
cache miss, Egress-Prog passes the packet to the fallback over-
lay network. Then the packet reaches Egress-Init-Prog after
undergoing processing within the fallback overlay network.
Egress-Init-Prog parses the headers and stores <container
sdIP → host interface index, host sdIP, host sdMAC> to the
egress cache. It also allocates a restore key for the reverse
flow, chosen randomly or sequentially, and writes <host sIP
& restore key → container sdIP> to the ingressIP cache. As a
hash map, the ingressIP cache naturely ensures the uniqueness
of the restore key. To deliver the restore key to the peer host,
Egress-Init-Prog writes the restore key into the user-defined
field within the inner header. Finally, the packet is transmitted
to the underlay network.

Step #2 (tagged in Figure 11 ②): Upon receiving a tunnel-
ing packet on the receiver host, Ingress-Init-Prog continues
the initialization. It parses the restore key contained within
the packet, and stores <container sdIP → restore key> to
the egress cache. Next, it stores <container dIP → container
dMAC> to the ingress cache (<container dIP → veth (host-
side) index> is maintained by the user space daemon). Finally,
the packet is forwarded to the destination application.

The above two steps fill up half of fields within the egress
cache and ingress cache on both hosts. Subsequently, the reply
of this tunneling packet goes through a similar yet reverse
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Results ONCache-t ONCache-r ONCache-t-r Host ONCache

Memcached
Latency -2.94% -7.01% -6.04% -5.38% 0%
TPS +2.97% +1.74% +4.32% +7.42% 0%
CPU +1.92% +2.14% -1.10% -6.21% 0%

PostgreSQL
Latency +0.04% -1.28% -5.77% -2.25% 0%
TPS -0.27% +1.23% +6.21% +2.61% 0%
CPU -1.86% -4.61% -10.36% +13.17% 0%

HTTP/1.1
Latency -2.82% -8.46% -10.00% -13.08% 0%
TPS +2.78% +9.09% +10.90% +15.10% 0%
CPU -5.48% -11.93% -14.02% -11.26% 0%

HTTP/3
Latency 0.00% +0.16% +0.16% +0.04% 0%
TPS -0.03% -0.03% -0.01% -0.03% 0%
CPU -26.30% +15.82% -10.51% -10.50% 0%

Table 4: The application performance and server CPU utilization (normalized by TPS) of ONCache-t, ONCache-r, ONCache-t-r,
and the host network compared to ONCache.

process (tagged in Figure 11 ③④), thereby completing the
entire initialization process.

G Application Evaluation for Optional Im-
provements

This section, we show the application evaluation results for the
optional improvements. The evaluation results of ONCache-r,
ONCache-t, ONCache-t-r, and the host network are listed in
Table 4. The listed values are relative to ONCache.

The application evaluation reveals the following key
findings: (1) Both the rewriting-based tunneling protocol
(ONCache-t) and bpf_redirect_rpeer (ONCache-r) im-
prove latency and TPS performance across all applications,
except for HTTP/3. They also reduce per-transaction CPU

utilization for PostgreSQL and HTTP/1.1. (2) With both op-
tional improvements, ONCache-t-r generally achieves the best
latency, TPS, and CPU utilization across all applications, ex-
cept for HTTP/3. Notably, the performance of ONCache-t-r
closely rivals that of the host network.

Due to the constraints of the experimental QUIC support of
Nginx, the absolute result values of HTTP/3 across different
implementations exhibit slight variations. Consequently, the
evaluation results of HTTP/3 are inconclusive.
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