
Network Load Balancing with Parallel Flowlets
for AI Training Clusters

Peirui Cao1,2, Wenxue Cheng1*, Shizhen Zhao2, Yongqiang Xiong1
1Microsoft Research Asia, 2Shanghai Jiao Tong university

ABSTRACT
Unlike traditional data center traffic, AI training traffic pri-
marily consists of large-size flows that are fewer in number.
This characteristic poses a challenge in balancing routing
granularity with reorder overhead in existing routing strate-
gies. Existing serial flowlet schemes aim to achieve a better
trade-off in TCP scenarios than flow-level or packet spray-
ing load balancing. However, they are not well-suited for AI
training clusters with high-performance RDMA networks.

To tackle this issue, we propose a parallel-flowlet strategy,
ParaLet, which effectively resolves the serial flowlet’s prob-
lems of insufficient routing entropy in AI training traffic and
the difficulty of identifying time gaps in RDMA networks.
ParaLet requires only a small number of Queue Pairs, which
are decoupled from the connections, thus circumventing
scalability limits. The theoretical analysis and simulations
indicate that ParaLet not only achieves near-optimal through-
put but also diminishes flow completion time by 1.5-3.4 times
compared to existing methods.

CCS CONCEPTS
• Networks → Network protocol design;

KEYWORDS
Network load balancing, Routing, AI training networks

ACM Reference Format:
Peirui Cao1,2, Wenxue Cheng1*, Shizhen Zhao2, Yongqiang Xiong1
1Microsoft Research Asia, 2Shanghai Jiao Tong university. 2024. Net-
work Load Balancing with Parallel Flowlets for AI Training Clusters.
In SIGCOMMWorkshop on Networks for AI Computing (NAIC ’24),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
NAIC ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Association for Computing Machinery.
ACM ISBN 979-8-4007-0713-1/24/08. . . $15.00
https://doi.org/10.1145/3672198.3673794

August 4–8, 2024, Sydney, NSW, Australia.ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3672198.3673794

1 INTRODUCTION
The rapid development of AI necessitates high-performance
RDMA networks to support the communication traffic gen-
erated by distributed training tasks. Due to the closed ecosys-
tem and high cost of InfiniBand [1], Ethernet-based RDMA
networks have gained favor among major vendors [2–4]. To
support the expanding AI training models, it is necessary
to interconnect more nodes, typically using an unblocking
multi-level Clos topology, which inherently provides path
diversity. In theory, multi-path routing can fully utilize the
available bandwidth and capacity resources in the network.
By simultaneously using multiple paths for data transmis-
sion, overall bandwidth utilization can be improved, reduc-
ing network congestion and bottlenecks. However, existing
load balancing strategies in AI training clusters struggle to
simultaneously meet the demands of the two dimensions.

Coarse-grained flow-level routing [5, 6], when faced with
a small number of long flows generated by AI training jobs, is
prone to flow conflicts resulting in tail latency and struggles
to achieve uniform load balancing according to the law of
large numbers. On the other hand, the finest-grained packet
spraying [7–9] introduces significant overhead at the end-
point due to the disordering problem observed in AI training
workloads. The intermediate-grained flowlet routing [10–13]
used in traditional TCP scenarios is also challenging to apply
in RDMA scenarios as it requires large time gaps. Existing
flowlets operate as serial flowlets, selecting a different path
one by one. Meanwhile, the original AI training flows have
a smaller number but larger size compared to traditional
data center applications, resulting in the problem of limited
routing path entropy [14].

As shown in Fig. 1, we propose the parallel flowlets scheme,
ParaLet, to address the mentioned problems. ParaLet adds
routing path entropy using parallel flowlets for better net-
work load balancing. Unlike traditional serial flowlets that
require finding optimal time gaps or pausing and waiting
for time gaps, ParaLet directly splits every original flow to
multiple flowlet blocks from the source. Meanwhile, ParaLet

∗Wenxue Cheng is the corresponding author.

https://doi.org/10.1145/3672198.3673794
https://doi.org/10.1145/3672198.3673794

NAIC ’24, August 4–8, 2024, Sydney, NSW, Australia Peirui Cao et al.

R
eo
rd
er
ov
er
he
ad

Routing granularity

Packet spraying
Out-of-order delivery risk

L
es
s
N
IC
p
re
ss
ur
e

Better load balancing

Flowlet
Hard to find time gaps

Flow-level
Hash collision
Uneven load balancing

ParaLet
Intra-ParaLet order delivery
No need for time gaps
Good load balancing

Figure 1: Design tradeoff for network load balancing.

ensures that packets within each flowlet follow the same
path for ordered delivery while allowing out-of-order arrival
at the destination for parallel flowlets. This approach mini-
mizes reorder overhead. Additionally, ParaLet achieves good
performance by using a small number of parallel flowlets and
ParaLet decouples Queue Pairs (QPs) and connections, which
is crucial for enhancing scalability in RDMA scenarios.

The contributions of this paper are as follows:

(1) We rethink the fundamental causes of existing load
balancing issues (§2.2) during AI training workloads
(§2.1), which can help guide the design of new load
balancing routing strategies.

(2) We propose parallel flowlets scheme, ParaLet, to im-
prove network load balancing for AI training clusters
(§3) and provide theoretical evidence (§4). Specifically,
ParaLet achieves wise routing granularity (§4.1) and
minimizes reorder overhead (§4.2). Meanwhile, we dis-
cuss the implementation to support the deployment of
ParaLet in real systems in the future (§5).

(3) Experimental results demonstrate that ParaLet achieves
near-optimal throughput and significantly reduces flow
completion time compared to existing strategies (§6).

2 BACKGROUND
2.1 New Features of AI Training Workloads
AI training workloads exhibit unique characteristics that set
them apart from traditional datacenter workloads [15–18].
These characteristics are primarily due to the use of multi-
ple accelerators (e.g., GPU, NPU, TPU, etc.) interconnected
through high-performance RDMA networks [19–21] in a
multi-node software design, forming a distributed system.
The Message Passing Interface (MPI) is commonly used for
data communication in this setup. The distinctive features
of AI training workloads include:

xCCL Collective communication primitives and
the number of active flows (#AF)

NCCL [26]
Broadcast, Reduce, All-Gather, Reduce-Scatter,
Ring / Double-binary-tree All-Reduce.
#AF is usually 1, 2, up to 3.

MSCCL [27]
Ring for All-Reduce, Reduce-Scatter, and
All-Gather. All-Pairs. Hierarchical.
Microsoft generally set #AF to 8.

ACCL [28]
Hybrid All-Reduce: intra-node Reduce-Scatter
+ Halving-Doubling + intra-node All-Gather.
#AF < 4

Other xCCL Also include the above primitives,
and #AF is also a small value.

Table 1: A small number of active flows in AI clusters.

High-bandwidth long flows: AI training jobs typically
involve higher bandwidth flows, ranging from several hun-
dred MBs to GBs [22]. The flow size is often several times
larger than the Bandwidth-Delay Product (BDP), necessitat-
ing network infrastructures capable of efficiently handling
such high-bandwidth flows.
A small number of flows: AI trainingmodels can be catego-
rized into various collective communication patterns [23, 24].
Each accelerator generates a small number of flows at any
given time, as stated in the Nvidia network architecture
white paper [14]. Despite the multi-stage optimizations ap-
plied to these communication patterns and the diverse imple-
mentations of different collective communication libraries
(xCCL) [25], every accelerator triggers the NIC to generate a
small number of active flows into the networks at any given
moment, as shown in Table 1.
Synchronized communication phases: To ensure that
the workers’ model remains up-to-date, the model is syn-
chronized in every iteration. During the training process,
a group of flows begins simultaneously when the cluster
enters a communication phase [29, 30]. This synchroniza-
tion contributes to bursts of network activity, which requires
effective management of network resources and may lead to
potential collision issues. The fact that some flows from the
last phase are not finished will affect the communication in
the subsequent phases.

2.2 Routing is Critical for AI Training
In large-scale AI clusters, multi-layer topology interconnec-
tions necessitate multi-path routing to fully utilize the diver-
sity of paths and achieve high bandwidth and low latency.
Optimizing routing is therefore crucial in these scenarios.

2.2.1 Limitations of Flow-level Routing in AI Training.
Flow-level routing is coarse-grained load balancing and guar-
antees ordered delivery by allowing packets of a flow to select
the same path through ECMP [5], using the 5-tuple (src-ip,

Network Load Balancing with Parallel Flowlets
for AI Training Clusters NAIC ’24, August 4–8, 2024, Sydney, NSW, Australia

dst-ip, src-port, dst-port, protocol number) as the hash factor,
or WCMP [6], which allocates the proportion of different
paths based on estimates of bandwidth and utilization. How-
ever, due to the small number of large-size flows and the
multi-hop selection in large-scale AI networks, flow-level
routing easily lead to uneven flow collision.

ConWeave [31] adds an additional opportunity for rerout-
ing during the transmission of a flow based on ECMP and
RTT awareness. ConWeave is suitable for traditional data
centerswhere it finds a new pathwith low utilization through
rerouting for reducing congestion. However, ConWeave re-
quires the scenario including a large number of small flows
combined with a small number of large flows, while AI train-
ing traffic includes mainly high-bandwidth large flows. This
offers little room for ConWeave optimization.

2.2.2 Challenges of Packet Spraying in AI Training. Packet
spraying [7–9, 35] randomly assigns packets from each flow
to one of the available ports, which causes a significant out-
of-order packets (OoOP) problem. RDMA is sensitive to
OoOP. When receiving an OoOP, the RNIC promptly ini-
tiates loss recovery, leading to a decrease in the sending
RNIC’s transmission rate. In addition, RNICs aremostly fixed-
function devices with limited resources, including packet
buffering capabilities. Whether using the Go-Back-N or the
enhanced Selective Repeat approach, RDMA experiences a
significant performance decline when facing OoOP, even re-
sulting in completion times for 1MB messages being slowed
down bymore than 3 times [31]. SRD [34] has designed a new
full-stack transport that supports OoOP for HPC workloads,
leaving the responsibility of order restoration to the layers
above it. However, it can be difficult to adapt this transport
for AI training applications as it requires modifications to
the ordering semantics in the upper layer.

2.2.3 Inefficiency of Flowlet Routing in AI Training. Flowlet
routing [10, 12, 13, 33] splits TCP flows into multiple flowlets
based on the inactive time gap among packets. Simultane-
ously, it estimates real-time congestion on fabric paths and
allocates flowlets to paths based on feedback from remote
switches. However, when considering an inactive time gap,
there are significantly fewer opportunities to find flowlets
in RDMA scenarios compared to TCP scenarios, even when
testing the gap threshold from 1𝑢𝑠 to 500𝑢𝑠 [36]. The reason
for this is that RDMA utilizes hardware-based packet pacing
per connection, also known as rate shaping, which leads to
a continuous flow of packets with minimal time gaps. Con-
sequently, due to the lack of sufficiently large flowlet gaps,
flowlet switching-based approaches are not well-suited for
RDMA. Hence, in AI training clusters under RDMAwith
a small number of large-size flows, typical flowlets
tend to generate uneven packet groups, leading to low
routing path entropy and packet disorder.

RDMA
Sender Switch

No time gap

Switch RDMA
Receiver

Disorder

Switch Switch

Memory of data
to be received

Typical serial flowlets fail for AI training clusters under RDMA

ParaLet leverages parallel flowlets to achieve both scalability and performance

Low routing entropy

Figure 2: ParaLet insight.

3 PARALET MOTIVATION
To address the issues of routing for AI training clusters (sum-
marized in Table 2), we introduce ParaLet, a novel parallel-
flowlet load balancing mechanism. The core concept of Par-
aLet is "parallel flowlet spraying." It divides the original flow
into multiple segments and concurrently sends𝑚 flowlets
into the network, effectively adding routing path entropy. As
shown in Fig. 2, similar to traditional flowlets, each parallel
flowlet can choose a new path. However, unlike traditional
flowlets that are injected into the network with time gaps at
the original rate, these𝑚 flowlets of every flow are delivered
in parallel at a fraction of that rate.

Unlike MPRDMA [36], which utilizes multipath by letting
every packet go to a different path with various windows
based on ECN feedback, resulting in the reorder of all out-
of-order packets and network scalability bottleneck, ParaLet
does not require such reorder at the destination. Instead,
ParaLet ensures that packets within a flowlet follow the same
path, avoiding most of reorder, while still allowing parallel
flowlets to arrive at the destination at different times.

ParaLet balances routing granularity and reorder overhead
by transmitting one flow across multiple, but not infinite,
paths. In contrast, flow-level load balancing restricts all pack-
ets of a flow to a single path, while packet spraying can
distribute a flow across as many paths as there are in-flight
packets. ParaLet, however, selects𝑚 paths concurrently for
every flow. As a result, ParaLet maintains in-order packets
delivery within each flowlet and only needs to ensure that all
flowlets from one flow successfully reach their destination.
ParaLet can be seen as a hybrid approach: it will degrade to
flow-level load balancing when𝑚 = 1 (treating the entire
flow as one flowlet) and to packet spraying when 𝑚 = ∞
(treating each packet as a separate flowlet).

4 THEORETICAL VERIFICATION
4.1 Routing Granularity
Considering one communication step of AI training over an
unblocking cluster, where each GPU starts to communicate
with its peer under other ToRs simultaneously. Focusing on

NAIC ’24, August 4–8, 2024, Sydney, NSW, Australia Peirui Cao et al.

Routing granularity Existing schemes Dilemma in AI training clusters
Flow-level ECMP [5], WCMP [6] Uneven flow conflict and long tail delay.
Rerouting ConWeave [31], Proteus [32] Little room for rerouting.

Flowlet Conga [13], LetFlow [12], HULA [33] Hard to find time gap.
Serial flowlet has the problem of limited routing path entropy.

Packet spraying RPS [7], DRILL [9], SRD [34]
QDAPS [8, 35] Sorting overhead at the destination server or ToR switch.

ParaLet Our schemes Parallel flowlets solve these dilemmas.
Table 2: The main issues of existing load balancing schemes in AI training clusters.

one ToR switch first. Assume the ToR has 𝑛 ingress ports and
𝑛 egress ports, thus it should forward 𝑛 flows from 𝑛 ingress
ports towards 𝑛 egress ports at line rate. We can calculate
the routing collision effect for different routing strategies.
1) Flow-level Routing: We expected one flow towards

one egress ports without collision. Under the random strat-
egy of ECMP, the collision probability would be 1 − 𝑛!

𝑛𝑛
. As

the increase of switch radix 𝑛 to support large scaled AI
cluster, the collision ratio could be almost 1. That is, at least
two flows would select the same port and then the flow com-
pleted time has to be at least doubled than optimal. Even
when we take the rerouting strategies like ConWeave [31],
the second choice still suffers the almost 1 collision ratio
since the number of congested flows are still comparable to
the number free ports. This is quite different from traditional
data center where you can always find enough free ports.
2) Packet Spraying: The success of Packet spraying for

load balancing is based on the Law of Large Numbers. With
infinite tries (one packet select once), the workload ratio
distributed to one egress port equals to probability to select
this port for each packet, i.e., 1

𝑛
. Thus each egress port just

need to handle as the same as the workload of each ingress
port, even through the packets has been totally disordered.

3) ParaLet: With𝑚 flowlets arriving at each ingress port
in parallel, the switch needs to distribute a total of 𝑚 ∗ 𝑛
flowlets to 𝑛 egress ports. Suppose there are 𝑋 flowlets dis-
tributed to one egress port. Thus, 𝑋 can be regarded as the
number of successful outcomes in 𝑛 ∗𝑚 Bernoulli tests with
a probability of 1

𝑛
, i.e., 𝑋 ∼ 𝐵(𝑚𝑛, 1

𝑛
). Then, 𝐸 (𝑋) = 𝑚 and

𝑉𝑎𝑟 (𝑋) =𝑚. Consequently, we can calculate the flow com-
pletion time slowdown as max(1, 𝑋

𝑚
). Let 𝑆 = 𝑋

𝑚
, then S

approximates to a Normal distribution 𝑁 (𝜇, 𝜎2) with 𝜇 = 1,
𝜎2 = 1

𝑚
. We can approximates the CDF (cumulative density

function) of S as Φ(𝑆−𝜇
𝜎

), where Φ is the CDF of the Standard
Normal Distribution. Considering the 𝑛 egress ports, the
maximal slowdownmax{𝑆0, 𝑆1, ..., 𝑆𝑛−1} can be estimated by
the (1 − 1

𝑁
) percentile of 𝑆 , i.e.

𝐸 (𝑆max𝑛) = 𝜇 + 𝜎 ∗ Φ−1 (1 − 1
𝑛
) = 1 +

Φ−1 (1 − 1
𝑛
)

√
𝑚

𝑛′ = Φ−1 (1 − 1
𝑛
) 𝑛 = 1

1−Φ(𝑛′) 𝑛′ = Φ−1 (1 − 1
𝑛
) 𝑛 = 1

1−Φ(𝑛′)
1 6 5 3488555
2 43 6 1.013 × 109
3 740 7 7.813 × 1011
4 31574 8 1.501 × 1015

Table 3: Impact of the switch radix 𝑛. Let 𝑛′ = Φ−1 (1− 1
𝑛
),

then 𝑛 = 1
1−Φ(𝑛′) . When 𝑛 increases to 1e+15, 𝑛′ is still

no more than 8.

When we considering the end-to-end flow transmission
through the whole AI cluster by multiple hops, we can find
this equation are still correct but the switch radix 𝑛 would
be changed to the whole number of GPU nodes 𝑁 . That is,
the final slowdown for ParaLet can be estimated as

𝑆𝑙𝑜𝑤𝐷𝑜𝑤𝑛 = 1 +
Φ−1 (1 − 1

𝑁
)

√
𝑚

(1)

Compared to ECMP, ParaLet is expected to speedup by√
𝑚 times, and only 1√

𝑚
slower than optimal. As shown in

Table 3, the switch radix 𝑛, which indicates the AI network
scale, has really few impact on the maximal slowdown.

4.2 Reorder Overhead
Packet Spraying will make the packets arrive at receiver in
unpredictable pattern, it is really hard to judge whether the
data between two disorder packets are lost or still in trans-
mission in the path. Current RDMA takes the Go-Back-N loss
recovery thus any disorder event will call re-transmission, re-
sulting in serious under-utilization. Technologies like SACK
could be much better than Go-Back-N to avoid unnecessary
re-transmission, but SACK requires more fine-grained trans-
port support. What is worse, it still have the risk to transmits
the packet in path, even through the risk maybe mitigated
by a magic timeout. But with ParaLet, packets insider one
flowlet are sequential and through the same path, thus the
disorder events inside one flowlet indicates loss event and
retransmission is necessary, and the disorder events between
different flowlets can be ignored directly.

Network Load Balancing with Parallel Flowlets
for AI Training Clusters NAIC ’24, August 4–8, 2024, Sydney, NSW, Australia

…

𝑚 QPs

…
…
…

…𝑘 connections

…

Sender

…

…
…
…

…

Receiver
𝑚 QPs

High-performance
network

flowlet

flowlet

Memory of data
to be received

packet

S1 S2 S3Parallel sprayingParallel flowlet generation

ECMP (now)
or

Adaptive routing (future)
for flowlets

Flowlet assemblage

Figure 3: ParaLet design.

5 DESIGN
5.1 ParaLet Steps
Theory (§3 and §4) has proved that ParaLet can achieve better
performance for AI training clusters. Next, we will show the
concrete steps of ParaLet, as shown in Fig. 3.

S1 Parallel flowlet generation. ParaLet needs𝑚 QPs
with different UDP source port to output𝑚 parallel flowlets
using decoupling (§5.3). EachQPwill pull thewaiting flowlets
and transmit data at 1

𝑚
of the line rate. Note that, ParaLet

only modifies RNICs at hosts.
S2 Parallel spraying. Since we create different QP with

different source ports, the𝑚 flowlets can directly be sprayed
to different paths based on ECMP hash function. In the future,
adaptive routing can also be incorporated into ParaLet.

S3 Flowlet assemblage. A parallel flowlet is a message
consisting of several packets. Splitting at theMPI layer allows
for the utilization of the RDMA feature, which enables out-
of-order delivery between messages. The receiver only needs
to ensure that all flowlets of a flow arrive successfully and
does not need to reorder packets, because packets within a
message follow the same path.

5.2 Parameter Tuning
The number of QPs𝑚 and the message size 𝑆 are important.
𝑚: Based on Equation(1), we should select 𝑚 based on

expected slowdown and the AI cluster scales. For example,
for a cluster contain tens-of-thousands accelerators, and we
expected the slowdown no more than 2, there would be

𝑚 ≥
(
Φ−1 (1−10−5)

2−1

)2
≈ 25. And when cluster extends more

than 109 nodes, to achieve the same slowdown, we only need

𝑚 ≥
(
Φ−1 (1−10−9)

2−1

)2
≈ 36.

𝑆 : The selection of 𝑆 does not impact the correctness of
ParaLet, but the QP should support a deeper tx-depth with
small 𝑆 to achieve full bandwidth utilization. And a larger 𝑆
may loss flexibility. Experiential, we suggested to select the
message (flowlet) size 𝑆 as 4𝐵𝐷𝑃/𝑚.

5.3 Decoupling QPs and Connections
It is crucial to consider the decoupling of QPs and connec-
tions to support parallel-flowlet traffic. This aspect is cur-
rently our ongoing work, and we provide the following guide.
ParaLet utilizes a QP scheduler to schedule𝑚 QPs from

host memory, similar to SRNIC [37]. This scheduler deter-
mines which QP to send data next and retrieves work queue
elements (WQEs) and data from the corresponding send
queue (SQ) using a data mover. Each SQ can support multi-
ple flowlets from different flows. Additionally, incorporating
MPI layer management in ParaLet involves handling vari-
ous tasks such as managing connection status, coordinating
receive buffers, and efficiently processing batch acknowl-
edgments for packet groups. One method for managing the
MPI layer is by utilizing a networking plugin, such as the
NCCL_NET_PLUGIN.

5.4 Benefits
Adaptive for various collective options and commu-
nication patterns: The xCCL will translate the collective
options into any kinds of communication patterns, thus the
number of concurrent active connections are dynamic. This
design can naturally adapt for any number of concurrent
active connections. Flowlets from different connections has
the same probability to be distribute to all𝑚 QPs, and then
the routing granularity can be also guaranteed.
High scalability: Typically in AI training, each node needs
to setup connections with all other nodes at the beginning of
the job. To catch up with the increase rate of AI scales, how
to handle the tens of thousands connections using limited
resources becomes a big challenge. Aimed at this, our design
decouples the connection management and QP transmission.
Besides, ParaLet limits the number of completed flows in
network, which make congestion control more flexible.

6 SIMULATION
Topology:We use NS3 simulator to simulate Clos topologies
with an over-subscription ratio of 1:1, including small-scale
128 accelerators and large-scale 1024 accelerators, respec-
tively. All links are 100Gbps with 1𝑢𝑠 latency. Each switch
has a buffer size of 9MB.

NAIC ’24, August 4–8, 2024, Sydney, NSW, Australia Peirui Cao et al.

0 20 40
Time (ms)

0

50

100

TT
 (x

10
0

Gb
ps

) ECMP
DRILL
ConWeave
LetFlow
ParaLet(m=8)
ParaLet(m=16)
ParaLet(m=32)

(a) Ring in small-scale 128 topology.

0 20 40 60
Time (ms)

0

50

100

TT
 (x

10
0

Gb
ps

) ECMP
DRILL
ConWeave
LetFlow
ParaLet(m=8)
ParaLet(m=16)
ParaLet(m=32)

(b) DBT in small-scale 128 topology.

0 20 40 60
Time (ms)

0

250

500

750

1000

TT
 (x

10
0

Gb
ps

) ECMP
DRILL
ConWeave
LetFlow
ParaLet(m=8)
ParaLet(m=16)
ParaLet(m=32)

(c) Ring in large-scale 1024 topology.

0 20 40 60 80
Time (ms)

0

250

500

750

1000

TT
 (x

10
0

Gb
ps

) ECMP
DRILL
ConWeave
LetFlow
ParaLet(m=8)
ParaLet(m=16)
ParaLet(m=32)

(d) DBT in large-scale 1024 topology.

Figure 4: Total throughput (TT) performance.

0

200

400

600

800

1000

SS, Ring SS, DBT LS, Ring LS, DBT

M
TT

 (x
10

0G
bp

s)

ECMP
DRILL
ConWeave
LetFlow
ParaLet(m=8)
ParaLet(m=16)
ParaLet(m=32)

(a) MTT

0
10
20
30
40
50
60
70
80
90

SS, Ring SS, DBT LS, Ring LS, DBT

FC
T

(m
s)

(b) FCT

Figure 5: Maximum Total Throughput (MTT) and Flow Completion Time (FCT) under AI training workloads of
Ring and double binary tree (DBT) in small-scale (SS) and large-scale (LS) typologies, respectively.

Workload: As shown in Table 1, evaluating All-Reduce en-
compasses the most combinations of other collective com-
munication primitives. Specifically, we use traffic snapshots
of the communication pair generated by the Ring-based All-
Reduce and the Double Binary Tree (DBT)-based All-Reduce.
Comparison objects: We mainly compare ParaLet using
different 𝑚 parallel flowlets with ECMP, DRILL [9], Let-
Flow [12] and ConWeave [31]. DRILL uses packet spraying,
which choose a new output port with the smallest queue
among 2 random samples and the current port. LetFlow is an
advanced resilient asymmetric flowlet scheme. We select the
time gap of 50 us, 100 us, and 200 us, and choose to present
the optimal result. ConWeave is the latest rerouting solution.
Metrics: Besides Flow Completion Time (FCT), we col-
lected statistics on the throughput of switch ports connected
to all source. By summing these values, we obtained theTotal
Throughput (TT), which reflects the effective throughput
of the entire network as it changes over time.

Fig. 4 illustrates that ParaLet achieves near-optimal through-
put. A coarse granularity of spraying is sufficient, and there
is no need for per-packet spraying. In the DBT workload,
DRILL’s TT experiences two sharp degradations, because
of out-of-order delivery, which not only adds overhead to
the receiver but also affects the source’s congestion control.
ECMP performs the worst across different scenarios because,
under the characteristics of AI training workloads, its uneven
flow hash conflicts become more pronounced. ConWeave
outperforms DRILL in the DBT workload, but in the Ring

workload, where rerouting opportunities are fewer, its per-
formance falls between DRILL and ECMP. LetFlow achieves
poor performance in AI training clusters. This is because
LetFlow struggles to identify the time gaps under RDMA,
and the size of flows is large but the number of flows in
the AI training traffic is fewer than in traditional data cen-
ters. Consequently, the available number of flowlets is also
limited, resulting in constrained routing entropy.
As shown in Fig. 5, ParaLet (𝑚=32) increases Max Total

Throughput (MTT) by 1.4-1.6 times and reduces FCT by 2.6-
3.4 times compared to ECMP. Compared to DRILL, ParaLet
increases MTT by about 1.1 times and reduces FCT by about
1.8 times. Compared to ConWeave, ParaLet increases MTT
by 1.2-1.6 times and reduces FCT by 1.5-1.6 times. Compared
to LetFlow, ParaLet increases MTT by 1.4-1.6 times and re-
duces FCT by 2.6-2.8 times. The performance of the ParaLet
improves with an increasing value of𝑚, although the rate
of improvement gradually diminishes. ParaLet requires only
32 QPs to achieve good simulation performance without the
need for an excessive number.

7 CONCLUSION
To tackle routing issues posed by AI training workloads, we
propose ParaLet, a parallel flowlets load balancing strategy,
which achieves the simultaneous reduction of flow collisions
and reorder overhead. Simulations demonstrate that ParaLet
achieves near-optimal throughput and significantly reduces
flow completion time compared to existing strategies.

Network Load Balancing with Parallel Flowlets
for AI Training Clusters NAIC ’24, August 4–8, 2024, Sydney, NSW, Australia

Acknowledgment: Thank anonymous reviewers for their
helpful comments. This work was supported by the NSF
China (No. 62272292).

REFERENCES
[1] Paul Grun. Introduction to infiniband for end users. White paper,

InfiniBand Trade Association, 55, 2010.
[2] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng,

Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Al-
izadeh, et al. Hpcc: High precision congestion control. In Proceedings
of the ACM Special Interest Group on Data Communication, pages 44–58.
2019.

[3] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. Rdma over commodity ethernet
at scale. In Proceedings of the 2016 ACM SIGCOMM Conference, pages
202–215, 2016.

[4] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-
iong Guo. A unified architecture for accelerating distributed {DNN}
training in heterogeneous {GPU/CPU} clusters. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20),
pages 463–479, 2020.

[5] Christian Hopps. Analysis of an equal-cost multi-path algorithm.
Technical report, 2000.

[6] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon
Poutievski, Arjun Singh, and Amin Vahdat. Wcmp: Weighted cost
multipathing for improved fairness in data centers. In Proceedings of
the Ninth European Conference on Computer Systems, pages 1–14, 2014.

[7] Advait Dixit, Pawan Prakash, Y Charlie Hu, and Ramana Rao Kompella.
On the impact of packet spraying in data center networks. In 2013
Proceedings IEEE INFOCOM, pages 2130–2138. IEEE, 2013.

[8] Jiawei Huang,Wenjun Lv,Weihe Li, JianxinWang, and Tian He. Qdaps:
Queueing delay aware packet spraying for load balancing in data center.
In 2018 IEEE 26th International Conference on Network Protocols (ICNP),
pages 66–76. IEEE, 2018.

[9] Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey, Yashar Ganjali, and
Amin Firoozshahian. Drill: Micro load balancing for low-latency data
center networks. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 225–238, 2017.

[10] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger.
Dynamic load balancing without packet reordering. ACM SIGCOMM
Computer Communication Review, 37(2):51–62, 2007.

[11] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu,
Gautam Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David
Wetherall, and Abdul Kabbani. Plb: congestion signals are simple
and effective for network load balancing. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 207–218, 2022.

[12] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom
Edsall. Let it flow: Resilient asymmetric load balancing with flowlet
switching. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 407–420, 2017.

[13] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis
Matus, Rong Pan, Navindra Yadav, et al. Conga: Distributed congestion-
aware load balancing for datacenters. In Proceedings of the 2014 ACM
conference on SIGCOMM, pages 503–514, 2014.

[14] NVIDIA. Nvidia spectrum-x network platform architecture - the first
ethernet network designed to accelerate ai workloads. Technical report,
NVIDIA, 11 2023.

[15] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
scalable, commodity data center network architecture. ACM SIGCOMM
computer communication review, 38(4):63–74, 2008.

[16] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C
Snoeren. Inside the social network’s (datacenter) network. In Pro-
ceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, pages 123–137, 2015.

[17] Peirui Cao, Shizhen Zhao, Min Yee The, Yunzhuo Liu, and Xinbing
Wang. Trod: Evolving from electrical data center to optical data center.
In 2021 IEEE 29th International Conference on Network Protocols (ICNP),
pages 1–11. IEEE, 2021.

[18] Peirui Cao, Shizhen Zhao, Dai Zhang, Zhuotao Liu, Mingwei Xu,
Min Yee Teh, Yunzhuo Liu, Xinbing Wang, and Chenghu Zhou.
Threshold-based routing-topology co-design for optical data center.
IEEE/ACM Transactions on Networking, 2023.

[19] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi,
Zhihao Jia, Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch.
{TopoOpt}: Co-optimizing network topology and parallelization strat-
egy for distributed training jobs. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23), pages 739–767,
2023.

[20] Qingkai Meng and Fengyuan Ren. Lightning: A practical building
block for rdma transport control. In 2021 IEEE/ACM 29th International
Symposium on Quality of Service (IWQOS), pages 1–10. IEEE, 2021.

[21] Yufei Ren, Xingbo Wu, Li Zhang, Yandong Wang, Wei Zhang, Zijun
Wang, Michel Hack, and Song Jiang. irdma: Efficient use of rdma in
distributed deep learning systems. In 2017 IEEE 19th International
Conference on High Performance Computing and Communications; IEEE
15th International Conference on Smart City; IEEE 3rd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages
231–238. IEEE, 2017.

[22] James Salamy. Network Requirements for Distributed Machine Learning
Training in the Cloud. PhD thesis, Massachusetts Institute of Technol-
ogy, 2022.

[23] William Won, Midhilesh Elavazhagan, Sudarshan Srinivasan, Ajaya
Durg, Swati Gupta, and Tushar Krishna. Tacos: Topology-aware col-
lective algorithm synthesizer for distributed training. arXiv preprint
arXiv:2304.05301, 2023.

[24] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd
Mytkowicz, Jacob Nelson, and Olli Saarikivi. Synthesizing optimal
collective algorithms. In Proceedings of the 26th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 62–75,
2021.

[25] Adam Weingram, Yuke Li, Hao Qi, Darren Ng, Liuyao Dai, and Xi-
aoyi Lu. xccl: A survey of industry-led collective communication
libraries for deep learning. Journal of Computer Science and Technol-
ogy, 38(1):166–195, 2023.

[26] Cliff Woolley. Nccl: Accelerated multi-gpu collective communications,
2015.

[27] Meghan Cowan, Saeed Maleki, Madanlal Musuvathi, Olli Saarikivi,
and Yifan Xiong. Msccl: Microsoft collective communication library.
arXiv preprint arXiv:2201.11840, 2022.

[28] Jianbo Dong, Shaochuang Wang, Fei Feng, Zheng Cao, Heng Pan,
Lingbo Tang, Pengcheng Li, Hao Li, Qianyuan Ran, Yiqun Guo, et al.
Accl: Architecting highly scalable distributed training systems with
highly efficient collective communication library. IEEE Micro, 41(5):85–
92, 2021.

[29] Jiacheng Xia, Gaoxiong Zeng, Junxue Zhang, Weiyan Wang, Wei Bai,
Junchen Jiang, and Kai Chen. Rethinking transport layer design for
distributed machine learning. In Proceedings of the 3rd Asia-Pacific
Workshop on Networking 2019, pages 22–28, 2019.

[30] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports,
and Peter Richtárik. Scaling distributed machine learning with {In-
Network} aggregation. In 18th USENIX Symposium on Networked

NAIC ’24, August 4–8, 2024, Sydney, NSW, Australia Peirui Cao et al.

Systems Design and Implementation (NSDI 21), pages 785–808, 2021.
[31] Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li, and

MunChoon Chan. Network load balancingwith in-network reordering
support for rdma. In Proceedings of the ACM SIGCOMM 2023 Conference,
pages 816–831, 2023.

[32] Jinbin Hu, Chaoliang Zeng, Zilong Wang, Junxue Zhang, Kun Guo,
Hong Xu, Jiawei Huang, and Kai Chen. Enabling load balancing for
lossless datacenters. In 2023 IEEE 31st International Conference on
Network Protocols (ICNP), pages 1–11. IEEE, 2023.

[33] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. Hula: Scalable load balancing using programmable
data planes. In Proceedings of the Symposium on SDN Research, pages
1–12, 2016.

[34] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. A cloud-
optimized transport protocol for elastic and scalable hpc. IEEE Micro,

40(6):67–73, 2020.
[35] Jiawei Huang, Wenjun Lyu, Weihe Li, Jianxin Wang, and Tian He.

Mitigating packet reordering for random packet spraying in data center
networks. IEEE/ACM Transactions on Networking, 29(3):1183–1196,
2021.

[36] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng
Cheng, Jiansong Zhang, Enhong Chen, and Thomas Moscibroda.
{Multi-Path} transport for {RDMA} in datacenters. In 15th USENIX
symposium on networked systems design and implementation (NSDI 18),
pages 357–371, 2018.

[37] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue
Li, Xinchen Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng, et al.
{SRNIC}: A scalable architecture for {RDMA}{NICs}. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23), pages 1–14, 2023.

	Abstract
	1 Introduction
	2 Background
	2.1 New Features of AI Training Workloads
	2.2 Routing is Critical for AI Training

	3 ParaLet Motivation
	4 Theoretical Verification
	4.1 Routing Granularity
	4.2 Reorder Overhead

	5 Design
	5.1 ParaLet Steps
	5.2 Parameter Tuning
	5.3 Decoupling QPs and Connections
	5.4 Benefits

	6 Simulation
	7 Conclusion
	References

