
Computer Networks 259 (2025) 111088

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Reunion: Receiver-driven network load balancing mechanism in AI training
clusters
Mingyao Wang a , Keqiang He c , Peirui Cao a ,∗, Jiong Duan a , Dongliang Lv b, Zehao Yu b,
Yanqing Chen a , Chengyuan Huang a , Wanchun Dou a, Guihai Chen a, Chen Tian a

a Nanjing University, China
b ZTE, China
c Shanghai Jiao Tong university, China

A R T I C L E I N F O

Keywords:
Load balancing
Distributed
Network

A B S T R A C T

RDMA over Converged Ethernet (RoCEv2) enables high-performance networking for large-scale model training
but faces challenges due to traffic characteristics such as elephant flows, low entropy, and traffic bursts.
Conventional load-balancing techniques like ECMP struggle with hash collisions, causing increased tail latency.
Advanced solutions, such as source routing and enhanced ECMP, mitigate these issues but still have hash
collisions when there are multiple sources. While packet spraying and flow slicing help alleviate load
imbalances due to hash collisions, they can intensify packet reordering issues. Reunion, a novel mechanism
for RoCEv2 environments, tackles three critical challenges of flowlet-based rerouting: (1) Rerouting decisions
introduce new hash conflicts; (2) The out-of-order packets caused by rerouting has a significant impact on small
flows; (3) Setting appropriate flowlet timeout values in high-bandwidth environments is difficult. By utilizing
Count-Min-Sketch to filter out small flows and aggregating real-time congestion data, Reunion enables source
switches to make dynamic rerouting decisions for elephant flows, minimizing congestion hotspots. Simulations
conducted using NS-3 highlight Reunion’s robustness and effectiveness in reducing tail latency. Under varying
network loads, Reunion outperforms existing load-balancing schemes such as Conga, LetFlow, ECMP, and
ConWeave, achieving tail latency reductions ranging from 10.9% to 62.1%.
1. Introduction

RDMA over Converged Ethernet (RoCEv2) delivers high-
performance networking support for large-scale model training work-
loads. However, the traffic characteristics in these scenarios – such
as elephant flows, low entropy, and bursts – pose significant chal-
lenges. For instance, in the context of Allreduce, the majority of the
communication flows are elephant flows. The communication pattern
ensures that within a stage, a node receives only one elephant flow,
and the efficiency of each stage depends on the completion time of
the slowest elephant flow. Therefore, it is necessary to ensure that
the transmission paths of the elephant flows are entirely disjoint.
Traditional load balancing methods like ECMP struggle to effectively
manage hash collisions under these conditions, leading to increased tail
latency [1–4] and decreased model training efficiency.

Enhanced-ECMP and source routing only alleviate partial conges-
tion [2,5]. However, when multiple sources are involved, their rout-
ing decisions can conflict, undermining the effectiveness of these ap-
proaches. Techniques such as packet spraying and flow slicing [1]

∗ Corresponding author.
E-mail address: caopeirui@nju.edu.cn (P. Cao).

mitigate hash collisions and load imbalance, but they fail to address
the performance degradation caused by packet reordering at the end-
points. AWS’s Scalable Reliable Datagram (SRD) [6] achieves reliable
transmission through intelligent path selection. However, its adoption
in most data centers remains limited due to the extensive requirements
for custom modules for SRD’s operation.

Dividing elephant flows into finer granularity without reaching
the per-packet level can enhance performance in scenarios with low
traffic entropy, such as those involving large language models (LLMs)
training. For instance, flowlet-based load balancing [7–9] in TCP net-
works enables effective load distribution while maintaining ordered
delivery. Load-balancing schemes that perform rerouting at the flowlet
level offer high flexibility, greater control over out-of-order delivery
compared to per-packet schemes, and compatibility with topological
heterogeneity. However, in RoCEv2-driven LLM training scenarios,
flowlet-based rerouting schemes face three main challenges: (1) The
rerouting decisions can introduce hash collisions because the new paths
are not fully disjoint; (2) The out-of-order packet delivery caused by
vailable online 4 February 2025
389-1286/© 2025 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.comnet.2025.111088
Received 19 December 2024; Received in revised form 21 January 2025; Accepted
data mining, AI training, and similar technologies.

 25 January 2025

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
https://orcid.org/0009-0001-5841-9846
https://orcid.org/0009-0005-7024-9164
https://orcid.org/0000-0002-0222-4943
https://orcid.org/0009-0002-3543-1233
https://orcid.org/0000-0001-6902-7752
https://orcid.org/0000-0002-6079-6579
https://orcid.org/0000-0003-2710-7628
mailto:caopeirui@nju.edu.cn
https://doi.org/10.1016/j.comnet.2025.111088
https://doi.org/10.1016/j.comnet.2025.111088


Computer Networks 259 (2025) 111088M. Wang et al.
Fig. 1. Switch queue length statistics.

Fig. 2. New hash collision after rerouting.

rerouting has a significant impact on small flows; (3) Determining
the flowlet timeout value (FTV) is difficult in high-bandwidth RDMA
environments. While ConWeave [9] simplifies configuring the flowlet
timeout (i.e., addressing the third challenge), it still struggles to mit-
igate the herd effect and achieve convergence. Additional details on
these limitations are provided in Section 2.2.

Reunion addresses the three main challenges of flowlet-based load
balancing by making more precise decisions for rerouting elephant
flows. Designed for deployment on network switches, Reunion utilizes
Count-Min-Sketch (CMS) to efficiently filter out small flows and gather
real-time congestion data at each hop along the traffic path. The
destination switch aggregates this congestion data to pinpoint potential
bottlenecks and instructs the source switch to reroute specific elephant
flows, avoiding congestion hotspots while minimizing the herd effect.
By eliminating the need to fine-tune flowlet timeout values (FTVs),
Reunion streamlines load balancing, ensuring robust and efficient path
selection. A comprehensive explanation of the design is provided in
Section 3.

In our NS-3 simulations, we evaluated the performance of Reunion
and compared it with other state-of-the-art load-balancing schemes,
including Conga [8], LetFlow [7], ECMP, and ConWeave [9]. Under
high network load conditions, Reunion achieved significant reductions
in tail latency: 43.8% compared to Conga, 44.8% compared to LetFlow,
44.9% compared to ECMP, and 10.9% compared to ConWeave. Under
low network load conditions, the reductions were similarly impactful,
with 62.1%, 46.3%, 45.4%, and 17.9% improvements, respectively. Ad-
ditionally, experiments across various parameter configurations demon-
strated the robustness of Reunion, consistently achieving at least a
61.9% reduction in tail latency compared to ECMP under 75% network
load.

2. Background and motivation

2.1. Fine-grained network load balancing is necessary in AI training

In the context of large-scale model training [1–4,9–13], traffic
patterns are dominated by elephant flows of comparable size origi-
nating from GPUs. This behavior contrasts with traditional data cen-
ter communication patterns, such as those observed in Data Mining,
MapReduce, and other similar workloads.
2

Table 1
The statistics of flows in a production training scenario.
Type Flow count Size

Tensor Parallelism (TP) 77 760 503 MB
Pipeline Parallelism (PP) 69 120 503 MB
Data Parallelism (DP) 3840 3.07 GB

Table 2
Comparison of existing load balancing schemes and Reunion.
Scheme Deployment Granularity

FlowBender [15] Host Flow
MPTCP [16] Host Packet
Hermes [17] Host Packtet
Clove [18] Host Flowlet
Hedera [19] Centralized Flow
ECMP[20] Switch Flow
WCMP [21] Switch Flow
RPS [22] Switch Packet
DRILL [23] Switch Packet
Conga [8] Switch Flowlet
LetFlow [7] Switch Flowlet
ConWeave [9] Switch Flowlet
Reunion Switch Flowlet

Meta [4] summarizes this new communication pattern arising from
LLM training as follows: (1) Low Entropy; (2) Burstiness; (3) Ele-
phant Flows. Take Ring Allreduce as an example: each GPU’s training
computation output (i.e., gradients) must be synchronized with the
outputs from other GPUs in the cluster to maintain a consistent global
state. As illustrated in Fig. 1, the variations in switch queue length
reflect the impact of synchronous microbursts generated by GPUs, lead-
ing to periodic queue buildups over time. In a production-scale large
model training scenario at our partner company involving thousands of
GPUs, the statistics for the generated flows are detailed in Table 1. The
size of the flows in each phase is the same. RoCEv2 congestion control
algorithms, e.g., DCQCN [14], are deployed to reduce congestion and
packet loss for RDMA traffic. Additionally, the oversubscription ratio in
the ToR-Aggregation layer is maintained at 1:1 to minimize hash colli-
sions and reduce the likelihood of network congestion, as recommended
in [2,3].

Due to the nature of collective communication, elephant flows often
burst simultaneously, with the speed of the slowest flow dictating
the efficiency of the training task. However, hash collisions can sig-
nificantly prolong the completion time of affected flows. This issue
has been observed in production environments by major companies
such as Alibaba [2], Meta [4], ByteDance [3], and Google [1]. As
such, minimizing the number of elephant flows that experience hash
collisions is critical, ideally eliminating them.

The research on load balancing for traditional data center workloads
is vibrant, as Table 2 summarizes. They perceive congestion and reroute
in specific ways at different granularities and deployment locations [1,
7,8,15,17–19,23–32]. In supporting large-scale model training work-
loads, ByteDance [3] and Alibaba [2] design their network topologies
with pre-assigned fixed routes for all communications to optimize
efficiency. Google [1] adopts a slicing approach, dividing flows into
smaller segments, with each slice traversing a different path. Meta
leverages e-ECMP [4] for enhanced load balancing and indicates plans
to explore rerouting elephant flows at the flowlet granularity in future
work, similar to the approach employed by LetFlow [7].

Flowlet granularity achieves a balance between packet granularity
and flow granularity, offering numerous advantages. First, it offers
greater flexibility compared to flow granularity and is easy to detect. If
the time interval between the arrival of consecutive packets exceeds a
predefined flow timeout value (FTV), the subsequent packet marks the
start of a new flowlet. In scenarios dominated by elephant flows, the ap-
pearance of flowlets usually means congestion because the congestion



Computer Networks 259 (2025) 111088M. Wang et al.
Fig. 3. Frequent rerouting by LetFlow, Conga, and ConWeave results in continuous hash collisions. The 𝑦-axis represents the number of flows per path, with the ideal state being
one or fewer flows per path.
control algorithm will reduce the transmission speed after sensing con-
gestion, thereby delaying the sending time of the next packet. Second,
the performance of flowlets is more controllable than that of packet
spraying because each flowlet is transmitted over a single path, making
it easier to observe and resulting in fewer out-of-order packets. How-
ever, as we will discuss in the following subsection, flowlet-based load
balancing has three major shortcomings: (1) Frequent rerouting triggers
new hash collisions, leading to reduced throughput. (2) The out-of-
order caused by rerouting has a significant impact on small flows;
(3) Determining an appropriate FTV is challenging in high-bandwidth
RDMA networks.

2.2. Rerouting decisions may introduce new hash collisions

If the rerouting decision introduces new hash collisions, the traffic
load balancing performance remains suboptimal, as shown in Fig. 2.
Because source switches are unaware of each other’s rerouting deci-
sions, they can cause potential hash collisions at specific hops even
after rerouting. To examine the performance of state-of-the-art flowlet-
based traffic load balancing schemes, we conducted a simulation using
an 8 × 8 leaf-spine topology with an oversubscription of 1:1 (i.e., the
leaf-spine network is non-blocking) and a network load of 75%. In this
setup, for each elephant flow, there exists a path that does not intersect
at all with the paths chosen by other elephant flows. If each path only
carries one elephant flow, then there are no hash collisions, thereby
achieving optimal performance. We randomly sampled eight paths and
calculated the number of elephant flows on them.

We set Conga’s FTV to be very small (500 ns and 1000 ns, respec-
tively), which improves the identification of new flowlets in RDMA
environments. For LetFlow, we used the same parameters as Conga; for
ConWeave, a load-balancing algorithm designed for RDMA communi-
cations, we used the parameter values recommended in their original
paper [9]. As shown in Fig. 3, while rerouting decisions are contin-
uously made, they may still introduce new hash collisions, meaning
that not every path eventually has fewer than or equal to one elephant
flow. Hash collisions persist even after the system converges. ConWeave
behaves differently, as it continuously performs rerouting in search of
better paths.
3

2.3. Rerouting decisions impact smaller flows

Rerouting decisions may provide more idle bandwidth but can also
lead to more out-of-order packets. To improve the performance of short
flows, load balancing schemes should balance these two factors, as
emphasized by [25,33–35]. To analyze the relationship between packet
reordering and rerouting frequency, we conducted simulations using an
8 × 8 leaf-spine topology, generating over 120 elephant flows based
on the Allreduce communication pattern. In this scenario, since the
network is lossless, out-of-order packets can only result from the re-
routing decisions. From Fig. 4(a) and Fig. 4(b), we found that the
amount of out-of-order generally increases as the number of flowlets
increases. However, this does not necessarily seriously affect the ele-
phant flow’s FCT (shown in Fig. 4(c)) because a flow’s throughput
primarily depends on whether it still experiences hash collisions after
the last rerouting decision. But for smaller flows (tens of megabytes),
the impact of out-of-order packets is more pronounced, as shown in
Fig. 4(d).

2.4. Flowlet timeout value is hard to choose

We observed that algorithms making routing decisions at the flowlet
granularity have two phases following congestion events. In the first
phase, rerouting decisions are frequent, leading to a substantial increase
in the number of flowlets, as demonstrated in Fig. 4(a). In the second
phase, there are almost no rerouting decisions. For example, there are
no rerouting decisions after 0.5 ms in Fig. 3(b), and few new flowlets
after 1 ms if the Flowlet Timeout Value (FTV) is larger than 1200 ns in
Fig. 4(a).

We first analyze the rerouting decisions in the first phase. Consider
a sender transmitting at 100 Gbps, with packet sizes of 1000 bytes:
the smallest feasible FTV spans tens of nanoseconds, while the FTV
for responding to congestion events ranges in the hundreds of mi-
croseconds. This broad range makes precise FTV tuning challenging.
We do a simulation to test the actual performance. In order to identify
flowlets more effectively, we adjust the congestion control algorithm to
be more conservative (i.e., DCQCN’s minimum rate, additive increase,
and hyper-additive increase are adjusted very low).

In the first phase, rerouting events exhibit substantial variability,
with minor parameter adjustments leading to significant changes in



Computer Networks 259 (2025) 111088M. Wang et al.
Fig. 4. LetFlow’s timeout value is hard to choose.
Fig. 5. Illustration of why no new flowlets are created after the hash collision. When
the FTV is set to a relatively high value (e.g., 1.2 μs), new flowlets are not identified
after a hash collision due to the inability of the mechanism to detect sufficiently long
inter-packet gaps.

their frequency. As Fig. 4(a) shows, LetFlow with an FTV of 1000 ns
generated over 2500 flowlets within a short 2.5 ms window. This be-
havior closely resembles packet spraying, undermining the advantages
of flowlet-based rerouting, such as mitigating packet reordering while
achieving fine-grained traffic load balancing. In contrast, LetFlow with
a 2000 ns FTV identified almost no flowlets (a flat curve indicates
no new flowlets are generated over time), effectively reverting to a
flow-granularity load balancing mechanism. This behavior highlights
the sensitivity of flowlet-based mechanisms to FTV configurations,
particularly in high-bandwidth RDMA environments.

In the second phase, where no rerouting is triggered, a mechanism
that performs rerouting with flowlet granularity might miss opportu-
nities for rerouting. To prevent an excessive number of new flowlets,
as shown in Fig. 4(a), we set the FTV to 1.2 μs. The flow rate diagram
in Fig. 5 illustrates a scenario where flows experience conflicts during
rerouting. When Flow 1 and Flow 2 encounter a hash collision at path
1, congestion prompts both flows to decrease their rates and generate
4

new flowlets. The flowlet from Flow 1 randomly chooses to stay in its
path. The flowlet from Flow 2 reroutes to path 2 and conflicts with Flow
3. Then, Flow 3 decreases the rate, and its flowlet randomly reroutes
to path 1. Finally, Flow 1 and Flow 3 increase their speeds to share the
bottleneck link bandwidth equally, and no new flowlets are generated,
thus losing the opportunity to reroute to another better path.

The interrelationships of rerouting challenges are illustrated in
Fig. 6. From our analysis of flowlet-based algorithms, we derive three
key insights to address these challenges: (1) Coordinating Rerouting
Decisions Across Multiple Sources. Independent rerouting decisions
in scenarios with multiple sources often lead to hash conflicts at
shared network links or switches. An effective rerouting strategy should
account for these interactions, aiming for a globally optimized path
selection to reduce congestion hotspots and improve load balancing.
(2) Prioritizing Elephant Flows for Rerouting. Elephant flows, which
are significant contributors to congestion, should be the primary target
for rerouting strategies. This focus ensures that the performance of
smaller flows, which are more sensitive to packet reordering, remains
unaffected. (3) Simplifying Parameter Configuration. Effective rerout-
ing strategies must rely on parameters that are easy to configure.
For instance, the flowlet flow timeout value (FTV), a critical param-
eter in flowlet-based rerouting, is challenging to tune, particularly
in high-bandwidth RDMA networks. Simplifying these parameters en-
sures consistent performance across varying network conditions and
facilitates deployment.

3. Design and algorithms

Given the challenges discussed in Section 2, specifically the limi-
tations of load balancing solutions in RDMA environments, we aim to
achieve the following four design goals: (1) Accurately detect bottle-
neck and highly utilized links to ensure correct rerouting decisions; (2)
Restrict the number of rerouted elephant flows on a single bottleneck
link to prevent the herd effect; (3) Identify elephant flows and mouse
flows and adopt different strategies for them to prevent out-of-order



Computer Networks 259 (2025) 111088M. Wang et al.
Algorithm 1 Destination Switch Notifying Phase
Input:
linkTable ← the table that records the number of elephant flows on
each link
CongestionTable ← This table is composed of key-value pairs. Key:
Links where hash collisions occur. Value: flow ID.
t ← the tolerance for hash collisions of elephant flows

1: linkTable, highUtilLinks ← GetLinkStats(FlowletTable, PathTable,
linkTable, 𝑡)

2: notificationPackets ← []
3: for congestionLink in congestionTable do
4: init notify packet 𝑝
5: p.flowId ←

congestionTable[congestionLink].flowId
6: p.congestionLink ← congestionLink
7: p.highlyUtilizedLink ← highUtilLinks
8: notificationPackets.add(p)
9: end for

10: Send notificationPackets
11: function GetLinkStats(FlowletTable, PathTable, linkTable, 𝑡)
12: for entry in FlowletTable do
13: if entry.elephantflow then
14: pathId ← entry.pathid
15: linkPath ← PathTable[pathId]
16: for link in linkPath do
17: linkTable[link] ← linkTable[link] + 1
18: end for
19: end if
20: end for
21: for link in linkTable do
22: if linkTable[link] > 𝑡 then
23: highUtilLinks.append(link)
24: end if
25: end for
26: return linkTable, highUtilLinks
27: end function

Algorithm 2 Source Switch Rerouting Phase
Input:
linkTable ← the table that records the number of elephant flows on
each link
𝑡 ← the tolerance for hash collisions of elephant flows

1: linkTable, _ ← GetLinkStats(FlowletTable, PathTable, linkTable, 𝑡)
2: for packet in notificationPackets do
3: pathids ← FindAvailablePaths(

FlowletTable[packet.flowId].dst)
4: for pathid in pathids do
5: linkPath ← PathTable[[pathid]]
6: if all link in linkPath has linkTable[link] < 𝑡 then
7: Increase the values in the linkTable for all links in

pathLink by 1
8: FlowletTable[flowId].pathid 𝑔 𝑒𝑡𝑠 pathid
9: end if

10: end for
11: end for

delivery for mouse flows; (4) Ensure that parameters are robust.
To this end, we propose Reunion, an effective load-balancing mech-

anism designed to disperse elephant flows efficiently. It addresses
hash collisions among elephant flows, which can significantly hinder
large-scale model training jobs. Reunion operates through three key
roles: source switch, intermediate switch, and destination switch, with
5

each role executing distinct logic to enable dynamic and coordinated
Fig. 6. Interrelationships of rerouting problems.

Fig. 7. Reunion packet header.

rerouting. In terms of parameters, Reunion only needs two parameters:
(a) Statistical interval (𝑠): the time interval for collecting flow statistics,
and (b) Hash collision tolerance (𝑡): the allowable threshold for hash
collisions during rerouting. Note Reunion eliminates the need for pre-
cise FTV tuning, relying on flowlet FTV only as a fallback mechanism.
More details are discussed in Section 4.2.

3.1. Header fields and parameters

In Reunion, each packet contains a PathID field and a Reunion
header to enable path encoding and congestion management. The
PathID field, situated in the RDMA BTH header, encodes the path a
packet traverses through the network. For example, in a 2-tier leaf-
spine network, the 8-bit PathID field can represent up to 256 distinct
paths1 [9]. The Reunion header includes the following three fields:
(1) an elephant flow bit to indicate if a flow is an elephant flow or
not; (2) two SwitchIDs that are used to indicate the first encountered
bottleneck link in the path due to elephant flow hash collision. When
the source switch processes packets, it employs the Count-Min-Sketch
(CMS) algorithm [36] to determine if a flow qualifies as an elephant
flow. If identified, the switch appropriately labels the packets using the
elephant flow bit in the Reunion header.

The statistical time interval 𝑠 is configured on both the source and
destination switches and is used to probe and evaluate the network
conditions within a specific time window.

The hash collision tolerance variable 𝑡 indicates the maximum num-
ber of elephant flows that can be sent with hash collisions on a
single link within the network in time interval 𝑠. If elephant flows
should be transmitted at line rate, we recommend setting 𝑡 to 1. A
value other than one typically occurs in cases of large flow slicing,
where an elephant flow is divided into two or more subflows and sent
simultaneously.

1 For 3-tier Clos networks, we can extend the Reunion header to carry a

larger PathID field, allowing for the encoding of additional paths.



Computer Networks 259 (2025) 111088M. Wang et al.
3.2. Elephant flow detection

Elephant flows are identified using the well-known Count-Min
Sketch (CMS) [36] algorithm. CMS was initially proposed as a method
for obtaining hotspots in Content Delivery Networks (CDNs), effectively
identifying the top-k hot data items. During the training of large-scale
machine learning models, various parallel strategies and synchroniza-
tion mechanisms may still generate smaller flows of similar size. To
address this, we employ CMS to filter out small flows.

The CMS algorithm enables switches to effectively detect large
flows by leveraging a Bloom filter. When a packet arrives, the source
switch applies multiple hash functions to its 5-tuple, calculating the
corresponding table entries. The switch then increments the value in
each of these entries. The switch retrieves the smallest value across
all entries to determine whether a packet belongs to a large flow. If
this value is among the largest observed, CMS classifies the packet as
part of an elephant flow. However, CMS has a limitation: its accu-
racy decreases when the number of flows becomes excessively large,
potentially leading to inaccurate classifications.

If there are 𝑚 flows and each switch has 𝑘 entries, with a total
of 𝑎 hash functions, the estimated frequency of a flow is given by
𝑓𝑞 = 𝑚𝑖𝑛(𝐶𝑗 ,ℎ𝑗 ,(𝑞)), 𝑗 ∈ [𝑡]. Assuming 𝑎 = 𝑙 𝑜𝑔(1∕𝛿), 𝑘 = 2∕𝜖, when 𝑎 and 𝑘
are chosen with these values, the probability that the number of false
positives exceeds 𝑚 ∗ 𝜖 is less than 𝛿. For example, in a scenario with
20,000 flows, where each switch has 2000 flowlet table entries and
uses 7 hash functions, the probability of more than 20 false positives
per CMS calculation is less than 0.01. These false positives arise from
conflicts between the entries of small flows and large flows in the
CMS table. An increase in false positives reduces the accuracy of CMS
identification results. The number of elephant flows transmitted by the
source switch typically does not exceed 200 (capped by the number of
GPUs connected to the switch), so calculated by the aforementioned
formula, the false positives per instance will not exceed 1. We set the
number of hot data items to be 𝑡 (the slicing threshold in our scheme)
times the number of uplinks. Under these conditions, all elephant flows
are correctly identified during transmission.

Only the source switch executes the CMS algorithm. If the CMS
result indicates that this is a large flow, then the elephant flow bit in
the packet header is set to 1.

3.3. Hash collision detection phase

In this phase, the source switch and intermediate-hop switches
monitor whether elephant flows transmitted on a link to their next hop
are experiencing severe hash collisions. If such collisions are detected,
the switches record the IDs of themselves and their next-hop switches
(indicating a bottleneck link) into the packet header. As illustrated in
Fig. 7, the Reunion header contains the switch’s ID and its next-hop
switch’s ID, which specify a bottleneck link together. Note that this
phase is not executed on the destination switch, as only the source
and intermediate-hop switches are capable of identifying severe hash
collisions that occur across flows destined for different destination
switches. For received elephant flow data packets, events take place
in the following order. (1) Before sending the packet to the next-
hop switch, the switch detects: (a) The number of elephant flows on
the same outgoing port exceeds the hash collision tolerance threshold
𝑡. (b) The switch at the current hop will write its own ID and the
next-hop switch’s ID into the packet header’s bottleneck link field.
However, if the link field in the packet header already has a value,
the switch will not update the packet header because hash collisions
occurring on earlier links in the path should be addressed first. (2)
The destination switch receives the data packets. The destination switch
updates the Bottleneck Link Table based on the packet: (a) The source
switch is determined based on the Path ID. (b) The packet’s bottleneck
link and flow ID are written into the table. This process allows the
destination switch to identify which links are bottlenecks due to hash
collisions between elephant flows and to update the Bottleneck Link
Table accordingly.
6

Fig. 8. The rerouting process of Reunion. The example of Reunion in a single flow
case can be generalized to multiple flows.

3.4. High link utilization detection phase

In this phase, the destination switch determines which links should
be avoided for rerouting.

For received elephant flow data packets, the destination switch
performs the following actions: (1) Data packets reach the destination
switch. (2) The destination switch updates its Link Table based on
the incoming packets. Each row in the table has the Path ID in the
first column, and the other columns represent the number of different
elephant flows currently being transmitted on each link that the Path
ID traverses. (3) During each statistical interval 𝑠, if the number of
elephant flows on a link meets or exceeds the slicing threshold 𝑡, the
destination switch considers that link highly utilized.



Computer Networks 259 (2025) 111088M. Wang et al.

c

u

c
B
A
s
s

p
t

r
L
s
(
P
U
u
t

p

𝐴

2

t
r

s

s
d

d
t
b

C

3.5. Notification phase

In this phase, the destination switch informs the source switch about
urrent network conditions, specifically: (1) The ID of the flow selected

for rerouting. (2) The specific link on which this flow is experiencing
a hash collision. (3) The set of high-utilization links that should not be
sed for rerouting by the source switch.

At the end of each statistical interval 𝑠, the destination switch
performs the following actions: (1) Construct a notification packet that
includes: (a) The flow ID, which informs the source switch of the flow
that should be rerouted. (b) The bottleneck link informs the source
switch where the hash collision occurred for this flow. (c) A list of
high utilization links informing the source switch which links should be
avoided during rerouting. (2) Send the notification packet to the source
switch, which is determined by calculating the Path ID. (3) Clear the
Link Table to prepare for the next statistical interval.

Take Fig. 8 as an example: after the destination leaf switch 𝐺
receives the congestion signal through the Reunion header from the
congested hop (Spine 𝐶), it records the network state as outlined in
Algorithm 1. During the statistical interval, the destination switch first
alculates the number of elephant flows on each link. Then, it iterates
ottleneck Link Table to identify the links experiencing hash collisions.
 random elephant flow is selected from one of these links, and the
ource switch of this flow is determined. In this example, destination
witch 𝐺 chooses Flow 1 and notifies source switch 𝐴 that links (spine

switch 𝐸 → leaf switch 𝐺 and leaf switch 𝐵 → spine switch 𝐸) are not
selectable. Each destination switch only selects one source switch to
notify about a congested hop, thus avoiding the herd effect. Note that
the selection of source switches at the bottleneck hop is random. Each
packet from a congested link updates the Bottleneck Link Table at the
destination switch. Before the notification phase begins, the last packet
to arrive could be randomly from any source switch. This randomness
also ensures that even if the selected source switch cannot change its
ath, other switches have the chance to alleviate hash collisions after
he next notification phase.

3.6. Rerouting phase

In this phase, the source switch reroutes the elephant flows that
have encountered hash collisions based on the information sent by the
destination switch.

First, all elephant flows sent from the source switch must be
ecorded in the Flow Path Table. The source switch maintains a
ink Table similar to the destination switch. Specifically, within the
tatistical interval 𝑠, the source switch performs the following actions:
1) Increases the count of elephant flows on the links traversed by the
ath IDs of the elephant flows it sends out, based on the Path Table. (2)
pon receiving the notification packet, for the bottleneck links and high
tilization links mentioned in the notification, the source switch marks
he number of elephant flows on those links as infinite, indicating that

these links are not selectable for subsequent rerouting. (3) Records
the flow IDs that need to be rerouted as indicated by the notification
acket.

When the statistical interval ends, for each flow that needs to be
rerouted, the source switch finds the available Path IDs based on the
destination switch ID it is supposed to send to. Then, (1) The source
switch searches for an available Path ID. An available Path means it
does not traverse any link with a flow count exceeding the slicing
threshold. This excludes bottleneck and high-utilization links. (2) Once
an available Path is found, the Link Table is updated to increase the
elephant flow count on the traversed links. This prevents new hash
collisions for other flows that need to be rerouted. The Flowlet Table is
also updated to reflect the new Path ID chosen for the flow. (3) Finally,
the Link Table is cleared to prepare for the next statistical interval.

Take Fig. 8 as an example: during the rerouting phase, leaf switch
updates the link status based on the information of the transmitted
7

elephant flows and marks the links indicated by the destination switch
𝐺 as not selectable. Finally, it chooses a path without hash collisions
for rerouting.

By adopting this approach, Reunion can achieve optimality in a
-tier Clos network topology,2 ensuring that every rerouting decision

is correct. This means that, in a 2-tier leaf-spine network topology,
Reunion dynamically reroutes traffic in such a way that the congestion
caused by hash collisions is minimized, leading to improved network
performance. In a 3-tier Clos network topology, Reunion works by
reducing the number of elephant flows experiencing hash collisions
with each rerouting decision. This ensures that even in more complex
network topologies, the mechanism continues to mitigate congestion
effectively.

3.7. The impact of out-of-order packets

To assess the degree of out-of-order packets, consider the follow-
ing scenario. The flow starts with the rate of 𝑟1. Initially, it can be
ransmitted at maximum speed under ideal network conditions without
equiring path changes. However, after the hash collision, the flow

receives a congestion signal, triggering rerouting decisions. If the new
path has more available bandwidth, the rerouted packets may arrive
earlier than the original path, leading to out-of-order packet delivery.

The last packet that caused the rerouting decision made has the
equence number of 𝑆𝑖 and was sent from the source server at 𝑡0. The

flow gets rerouted, whether the decision is made by a host or switch
at time 𝑡0 + 𝛿 𝑡, and the source decreases the speed, which causes the
sending rate drop from 𝑟1 to 𝑘 ∗ 𝑟1. The first packet on the new path
has a sequence number of 𝑆𝑗 . Therefore, The maximum number of bytes
out of order is 𝑆𝑗 - 𝑆𝑖. The original path from server 𝐿0 to server 𝐿1 has
a delay of 𝑡1, and the reverse path has a delay of 𝑡′1; the new path from
erver 𝐿0 to server 𝐿1 has a delay of 𝑡2, and the reverse path has the
elay of 𝑡′2. The maximum number of the bytes delivered out-of-order

can be calculated as Eq. (1):
⎧

⎪

⎨

⎪

⎩

𝑆𝑗 − 𝑆𝑖 = 𝑟1𝛥𝑡 + 𝑟2(𝑡2 + 𝑡′2)

𝑡1 = 𝛥𝑡 + 𝑡2
𝑟2 = 𝑘 ∗ 𝑟1

(1)

When congestion is detected, the source server reduces its rate
based on its congestion control algorithm (CCA), which helps mitigate
congestion quickly. Our simulation, with a 12 MB switch buffer, 100
Gbps links, and an elephant flow size of 2 GB, demonstrates that the
impact of rerouting on packet order is minimal (< 0.1%). This is due
to the fact that Reunion only reroutes an elephant flow at most once in
each time interval 𝑠, and the average number of rerouting events across
ifferent load scenarios and parameter settings is low. Consequently,
he proportion of out-of-order packets caused by rerouting is negligi-
le. Furthermore, the rate of the elephant flow converges rapidly, as

illustrated in Fig. 5. This ensures that the performance degradation due
to out-of-order delivery remains minimal.

4. Evaluation

We use NS-3 simulations to evaluate Reunion’s performance and
compare it against flowlet-based rerouting mechanisms, including

onga, LetFlow, and ConWeave. The simulations utilize an 8 × 8 leaf-
spine topology with a 1:1 oversubscription ratio, where each link had
a 100 Gbps capacity and 1 μs latency. Parameters for each scheme are
carefully tuned to their optimal settings. Since DCQCN’s default param-
eters are not suitable for a scale of over a hundred nodes, we adjust
(𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥, 𝑃𝑚𝑎𝑥) to (100KB, 400 KB, 0.2). The switch buffer size is set
to 12 MB, and PFC is enabled with a dynamic threshold as suggested

2 It has been shown in HPN [2] that a 2-tier Clos network is already
sufficient to ensure communication across ten thousand GPU cards.



Computer Networks 259 (2025) 111088M. Wang et al.
Fig. 9. FCT under different network traffic loads.
in [9]. Unless otherwise specified, we set Reunion’s parameter 𝑡 to 1 and
parameter 𝑠 to 1000 μs. We implement a Ring Allreduce communication
pattern based on the traffic characteristics outlined in Table 1, where
the size of the simultaneously communicating elephant flows is set to
2 GB. For the evaluation, we select hosts located across different racks
to initiate communication. The network load is varied to analyze the
behavior and performance under diverse traffic conditions. We focus
on improving overall communication efficiency, especially tail latency.
Therefore, we use the FCT (Flow Completion Time) distribution of
elephant flows to characterize the performance and use tail FCT as a
key metric for comparison.

4.1. Reduction on tail FCT

Fig. 9 demonstrates the effectiveness of Reunion in reducing tail FCT
under varying network loads. In Fig. 10, we evaluate the performance
of ECMP, Reunion, ConWeave, Conga, and LetFlow by measuring their
maximum FCTs. We observe that Reunion completes the slowest flows
at least 10.9%–25.2% faster than other schemes for diverse network
loads between 40% to 90%. This performance is attributed to Reunion’s
ability to quickly converge to disjoint paths, minimizing congestion and
ensuring more efficient load balancing.

At a network load of 90%, Reunion cannot guarantee near-optimal
FCTs for all flows, with approximately 20% of flows experiencing FCTs
that are twice the optimal value. This limitation arises because, under
such high load conditions, no source switch can identify idle paths
for rerouting, as illustrated in Fig. 11.3 This scenario typically occurs
when the load nears saturation, where the average load of 90% allows
for instantaneous peaks reaching 100%. In all other cases, Reunion

3 Unless the paths taken by Flow 1 and Flow 3 are swapped, there will be
no available paths to reroute and avoid the hotspot at Spine C.
8

Fig. 10. FCTs comparison.

Fig. 11. When there are few alternative paths, Reunion may not be able to find a
perfect path for rerouting.



Computer Networks 259 (2025) 111088M. Wang et al.
effectively identifies alternative paths to mitigate congestion.
We find that under high-load conditions, ConWeave exhibits a

smaller FCT range compared to other schemes, with tail latency only
15.2% higher than its minimum FCT. This is because ConWeave con-
tinuously reroutes all flows experiencing congestion, and flows without
hash collisions may experience hash collisions after other flows are
rerouted, leading to similar FCTs. In contrast, Reunion, Conga, and
LetFlow exhibit more step-like FCT distributions. For Reunion, this
pattern is due to its targeted rerouting mechanism: destination switches
only notify source switches about flows with hash collisions, ensuring
that uncongested flows maintain their paths. Once Conga and LetFlow
complete their rerouting convergence, they similarly avoid further path
changes. Even under these conditions, Reunion still performs slightly
better than ConWeave (by 10.9%). This advantage is attributed to
Reunion’s strategy of marking paths as idle once transmissions for
collision-free flows are completed. These idle paths are subsequently
utilized for rerouting, accelerating the completion of remaining flows,
and improving overall efficiency.

4.2. Robustness

To test Reunion’s robustness, we evaluate the impact of varying the
statistical interval parameter (𝑠) on the frequency of rerouting decisions
and their impact on Flow Completion Time (FCT). As shown in Fig. 12,
the number of rerouting events positively correlates with 𝑠. Smaller 𝑠
values do not always result in faster convergence because rerouting
depends on whether the destination switch can designate a source
switch capable of finding a suitable path. This improves only when the
designated source successfully reroutes. Nearly all rerouting decisions
are completed within 30 ms of the elephant flow’s transmission when
𝑠 is set to 2500 μs, and within 6 ms when 𝑠 is 250 μs. Across different
parameter settings, Reunion achieves a tail FCT improvement of 61.9%
to 64.7% compared to ECMP.

Furthermore, unlike LetFlow, which only relies on FTV for rerout-
ing, the FTV of Reunion is only used as a fallback mechanism so that it
can be set to a relatively large value (such as the 500 μs recommended
in LetFlow [7]).

4.3. When allowing out-of-order packets

The analysis above shows that an increased number of flowlets can
lead to more out-of-order packet delivery. A natural question arises: if
support for out-of-order packets is enhanced, could this improve the
performance of Conga and LetFlow? To explore this, we conducted
simulations where we disabled PFC (Priority Flow Control) and em-
ployed IRN’s SACK (Selective Acknowledgment) mechanism, which is
designed to handle out-of-order packets, as described by Mittal et al.
in their study on revisiting congestion control mechanisms for RDMA
networks [37]. Our results show that while the average tail latency
for all mechanisms increased with this modification, the increase was
relatively modest–less than 10%. Despite this adjustment, Reunion
continues to outperform other mechanisms, as illustrated in Fig. 13.
This suggests that even with enhanced support for out-of-order packets,
Reunion’s rerouting approach remains more effective at minimizing tail
latency.

4.4. Compatibility with flow slicing

To prevent hash collisions caused by elephant flows, an effective
strategy is to reduce the probability of collisions by slicing the flows.
Assume that 𝑘 flows from different servers in one rack compete for 𝑏
core links. Each path can have 𝑝 flows transmitting at link rate 𝑟, which
means the core link rate is 𝑝 ∗ 𝑟 when the oversubscription ratio is 1 in
the leaf-spine network. The ideal case is that each path is chosen by at
most 𝑚𝑎𝑥(1, 𝑘∕𝑏) flow slices. However, if one path is selected by 𝑐 slices,
where 𝑐 exceeds 𝑝, each flow slice gets a fair share of 𝑟 ∗ 𝑝∕𝑐. The mean
9

Fig. 12. Reunion robustness. If all flows are sent at full speed, the FCT is 160 ms. All
rerouting decisions occur within the first 30 ms for Reunion with different parameters,
and the final FCT distribution does not vary significantly.

Fig. 13. FCT with IRN SACK support.

speed of a flow can thus be calculated using the formula in Eq. (2):

𝐸(𝑟𝑎𝑡𝑒) =
∑𝑝−1

𝑖=0
(𝑘−1

𝑖

)

∗ 𝑟 +
∑𝑘−1

𝑖=𝑝
(𝑘−1

𝑖

)

∗ 𝑝
𝑖 ∗ 𝑟

𝑏𝑘−1
(2)

We conduct experiments by slicing elephant flows to assess the
impact of flow slicing on the FCT of elephant flows. In this study,
the load balancing algorithm treats each sliced flow as a separate
entity. Therefore, the hash collision tolerance parameter 𝑡 in Reunion
is set to the corresponding number of slices. Flow slicing allows the
subflows of a sliced flow to be transmitted simultaneously, so the
highest FCT among the subflows determines the FCT of the elephant
flow to which they belong. We observe that the number of rerouting
events in Reunion nearly doubled, but the tail latency of the flows
was similar to the unsliced case. As shown in Fig. 14, the results
for slicing flows into two, three, and four segments are displayed in
the left, middle, and right sections, respectively. For flow slicing into
three or four segments, ConWeave achieves tail latency around 3%
lower than Reunion. This improvement occurs because the large, bursty
elephant flows are divided into smaller sub-flows, making the traffic
distribution more uniform. However, this also puts additional pressure
on ConWeave’s reordering mechanism. The performance of LetFlow
and Conga improves as more slices are created, which leads to reduced
tail FCT. For example, slicing the flow into 2 to 4 segments can improve
Conga’s performance by at least 39.2%. For ECMP, the performance
can be enhanced by 25.5%. For LetFlow, the improvement is 10.1%.
However, increasing the number of slices does not yield additional
benefits for ECMP and LetFlow. This is because splitting flows into
more slices results in more sub-flows being transmitted simultaneously.
While this improves load distribution, it also exacerbates queue buildup
due to micro-bursts, offsetting the benefits of increased granularity.
Consequently, dividing flows into too many slices does not necessarily
enhance performance further.

5. Conclusion

This paper introduces Reunion, a receiver-driven flowlet-level traffic
load-balancing scheme designed to address the unique challenges of AI
training clusters. Reunion leverages real-time congestion information



Computer Networks 259 (2025) 111088M. Wang et al.
Fig. 14. Reunion with flow slicing. When the number of slices is 2, 3, or 4, the performance of Reunion shows little variation and significantly outperforms LetFlow, Conga, and
ECMP.
collected in the switch dataplane to enable destination switches to
notify and coordinate source switches to reroute elephant flows based
on network dynamics. This approach effectively resolves elephant flow
hash collisions while preserving the performance of small flows and
minimizing packet reordering. Reunion’s lightweight design makes it
deployable on existing switch hardware with minimal modifications.
Our simulation results demonstrate that Reunion effectively reduces
tail FCTs by 10.9% to 62.1% compared to LetFlow, ECMP, Conga, and
ConWeave under high network load in realistic workload patterns.

CRediT authorship contribution statement

Mingyao Wang: Writing – review & editing, Writing – original
draft, Methodology, Investigation, Formal analysis, Data curation, Con-
ceptualization. Keqiang He: Writing – review & editing, Supervision.
Peirui Cao: Writing – review & editing. Jiong Duan: Software, For-
mal analysis, Data curation. Dongliang Lv: Supervision, Resources,
Funding acquisition. Zehao Yu: Supervision, Resources, Funding ac-
quisition. Yanqing Chen: Writing – review & editing, Formal analysis.
Chengyuan Huang: Writing – review & editing. Wanchun Dou: Writ-
ing – review & editing. Guihai Chen: Writing – review & editing. Chen
Tian: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We thank the anonymous reviewers for their constructive feedback.
This research is supported by the National Natural Science Foundation
of China under Grant Numbers 62325205 and 62172204, the Nanjing
University-China Mobile Communications Group Co.,Ltd. Joint Insti-
tute, the Fundamental Research Funds for the Central Universities,
the Collaborative Innovation Center of Novel Software Technology
and Industrialization, and the Jiangsu Innovation and Entrepreneurship
(Shuangchuang) Program.

Data availability

The authors are unable or have chosen not to specify which data
has been used.
10
References

[1] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek
Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff
Dean, Slav Petrov, Noah Fiedel, PaLM: Scaling language modeling with pathways,
2022, http://dx.doi.org/10.48550/ARXIV.2204.02311.

[2] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan, Binzhang
Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, Chao Wang, Peng Wang, Pengcheng
Zhang, Xianlong Zeng, Eddie Ruan, Zhiping Yao, Ennan Zhai, Dennis Cai,
Alibaba HPN: A data center network for large language model training, in:
Proceedings of the ACM SIGCOMM 2024 Conference, in: ACM SIGCOMM ’24,
Association for Computing Machinery, New York, NY, USA, 2024, pp. 691–706,
http://dx.doi.org/10.1145/3651890.3672265.

[3] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang,
Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin
Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou, Yiyao Sheng, Zhuo Jiang,
Haohan Xu, Haoran Wei, Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao,
Liang Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin, Xin Liu,
MegaScale: Scaling large language model training to more than 10,000 GPUs,
2024, arXiv:2402.15627.

[4] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu, Guilherme
Goes, Hany Morsy, Rohit Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty,
Jingyi Yang, Shuqiang Zhang, Mikel Jimenez Fernandez, Shashidhar Gandham,
Hongyi Zeng, RDMA over ethernet for distributed training at meta scale, in:
Proceedings of the ACM SIGCOMM 2024 Conference, in: ACM SIGCOMM ’24,
Association for Computing Machinery, New York, NY, USA, 2024, pp. 57–70,
http://dx.doi.org/10.1145/3651890.3672233.

[5] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu, Guilherme Goes,
Hany Morsy, Rohit Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty, Jingyi
Yang, et al., Rdma over ethernet for distributed training at meta scale, in:
Proceedings of the ACM SIGCOMM 2024 Conference, 2024, pp. 57–70.

[6] Leah Shalev, Hani Ayoub, Nafea Bshara, Erez Sabbag, A cloud-optimized
transport protocol for elastic and scalable HPC, IEEE Micro 40 (6) (2020) 67–73.

[7] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, Tom Edsall, Let it
flow: Resilient asymmetric load balancing with flowlet switching, in: NSDI, vol.
17, 2017, pp. 407–420.

[8] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus,
Rong Pan, Navindra Yadav, et al., CONGA: Distributed congestion-aware load
balancing for datacenters, in: Proceedings of the 2014 ACM Conference on
SIGCOMM, 2014, pp. 503–514.

[9] Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li, Mun Choon
Chan, Network load balancing with in-network reordering support for RDMA, in:
Proceedings of the ACM SIGCOMM 2023 Conference, in: ACM SIGCOMM ’23,
Association for Computing Machinery, New York, NY, USA, 2023, pp. 816–831,
http://dx.doi.org/10.1145/3603269.3604849.

[10] Huasha Zhao, John Canny, Kylix: A sparse allreduce for commodity clusters,
in: 2014 43rd International Conference on Parallel Processing, IEEE, 2014, pp.
273–282.

http://dx.doi.org/10.48550/ARXIV.2204.02311
http://dx.doi.org/10.1145/3651890.3672265
http://arxiv.org/abs/2402.15627
http://dx.doi.org/10.1145/3651890.3672233
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb5
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb5
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb5
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb5
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb5
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb5
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb5
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb6
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb6
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb6
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb7
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb7
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb7
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb7
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb7
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb8
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb8
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb8
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb8
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb8
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb8
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb8
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb8
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb8
http://dx.doi.org/10.1145/3603269.3604849
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb10
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb10
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb10
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb10
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb10


Computer Networks 259 (2025) 111088M. Wang et al.
[11] Amith R. Mamidala, Jiuxing Liu, Dhabaleswar K. Panda, Efficient barrier and
allreduce on infiniband clusters using multicast and adaptive algorithms, in: 2004
IEEE International Conference on Cluster Computing (IEEE Cat. No. 04EX935),
IEEE, 2004, pp. 135–144.

[12] Alexander Sergeev, Mike Del Balso, Horovod: fast and easy distributed deep
learning in TensorFlow, 2018, arXiv:1802.05799.

[13] Rajeev Thakur, Rolf Rabenseifner, William Gropp, Optimization of collective
communication operations in MPICH, Int. J. High Perform. Comput. Appl. 19
(1) (2005) 49–66, http://dx.doi.org/10.1177/1094342005051521.

[14] Yibo Zhu, Monia Ghobadi, Vishal Misra, Jitendra Padhye, ECN or delay:
Lessons learnt from analysis of DCQCN and TIMELY, in: Proceedings of the
12th International on Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’16, Association for Computing Machinery, New York,
NY, USA, 2016, pp. 313–327, http://dx.doi.org/10.1145/2999572.2999593.

[15] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, Fabien Duchene, Flowbender:
Flow-level adaptive routing for improved latency and throughput in datacenter
networks, in: Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies, 2014, pp. 149–160.

[16] Sébastien Barré, Christoph Paasch, Olivier Bonaventure, MultiPath TCP: from
theory to practice, in: Proceedings of the 10th International IFIP TC 6 Conference
on Networking - Volume Part I, NETWORKING ’11, Springer-Verlag, Berlin,
Heidelberg, 2011, pp. 444–457.

[17] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, Mosharaf Chowdhury, Resilient
datacenter load balancing in the wild, in: Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, 2017, pp. 253–266.

[18] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman, Changhoon
Kim, Jennifer Rexford, Clove: Congestion-aware load balancing at the vir-
tual edge, in: Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies, 2017, pp. 323–335.

[19] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, Amin Vahdat, et al., Hedera: dynamic flow scheduling for data center
networks, in: Nsdi, vol. 10, (no. 8) San Jose, USA, 2010, pp. 89–92.

[20] C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm, RFC, RFC Editor,
2000.

[21] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Arjun
Singh, Amin Vahdat, WCMP: weighted cost multipathing for improved fairness
in data centers, in: Proceedings of the Ninth European Conference on Computer
Systems, EuroSys ’14, Association for Computing Machinery, New York, NY, USA,
2014.

[22] Advait Dixit, Pawan Prakash, Y Charlie Hu, Ramana Rao Kompella, On the
impact of packet spraying in data center networks, in: 2013 Proceedings IEEE
INFOCOM, IEEE, 2013, pp. 2130–2138.

[23] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali, Amin
Firoozshahian, Drill: Micro load balancing for low-latency data center networks,
in: Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, 2017, pp. 225–238.

[24] Jiaxin Cao, Rui Xia, Pengkun Yang, Chuanxiong Guo, Guohan Lu, Lihua Yuan,
Yixin Zheng, Haitao Wu, Yongqiang Xiong, Dave Maltz, Per-packet load-balanced,
low-latency routing for clos-based data center networks, in: Proceedings of the
Ninth ACM Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’13, Association for Computing Machinery, New York, NY, USA, 2013,
pp. 49–60, http://dx.doi.org/10.1145/2535372.2535375.
11
[25] Jiaqing Dong, Lijuan Tan, Chen Tian, Yuhang Zhou, Yi Wang, Wanchun Dou,
Guihai Chen, MEET: rack-level pooling based load balancing in datacenter
networks, IEEE Trans. Parallel Distrib. Syst. 33 (12) (2022) 3628–3639.

[26] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, Aditya Akella,
Presto: Edge-based load balancing for fast datacenter networks, in: Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication,
SIGCOMM ’15, Association for Computing Machinery, New York, NY, USA, 2015,
pp. 465–478, http://dx.doi.org/10.1145/2785956.2787507.

[27] Yi Wang, Ya-nan Jiang, Qiufang Ma, Chen Tian, Bo Bai, Gong Zhang, RDMA
load balancing via data partition, in: 2019 28th International Conference on
Computer Communication and Networks, ICCCN, 2019, pp. 1–8, http://dx.doi.
org/10.1109/ICCCN.2019.8847077.

[28] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, Jennifer Rexford,
Hula: Scalable load balancing using programmable data planes, in: Proceedings
of the Symposium on SDN Research, 2016, pp. 1–12.

[29] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam
Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, Abdul
Kabbani, PLB: Congestion signals are simple and effective for network load
balancing, in: Proceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM
’22, Association for Computing Machinery, New York, NY, USA, 2022, pp.
207–218, http://dx.doi.org/10.1145/3544216.3544226.

[30] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, Randy Katz,
DeTail: Reducing the flow completion time tail in datacenter networks, in: Pro-
ceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, 2012, pp. 139–150.

[31] Dan Li, Du Lin, Changlin Jiang, Lingqiang Wang, SOPA: Source routing based
packet-level multi-path routing in data center networks, ZTE Commun. 16 (2)
(2018) 42–54.

[32] Weibo Cai, Shulin Yang, Gang Sun, Qiming Zhang, Hongfang Yu, Adaptive
load balancing for parameter servers in distributed machine learning over
heterogeneous networks, ZTE Commun. 21 (1) (2023) 72–80.

[33] Sen Liu, Yongbo Gao, Zixuan Chen, Jiarui Ye, Haiyang Xu, Furong Liang, Wei
Yan, Zerui Tian, Quanwei Sun, Zehua Guo, Yang Xu, Halflife: An adaptive
flowlet-based load balancer with fading timeout in data center networks, in:
Proceedings of the Nineteenth European Conference on Computer Systems,
EuroSys ’24, Association for Computing Machinery, New York, NY, USA, 2024,
pp. 66–81, http://dx.doi.org/10.1145/3627703.3650062.

[34] Guo Chen, Yuanwei Lu, Bojie Li, Kun Tan, Yongqiang Xiong, Peng Cheng,
Jiansong Zhang, Thomas Moscibroda, Mp-rdma: enabling rdma with multi-path
transport in datacenters, IEEE/ACM Trans. Netw. 27 (6) (2019) 2308–2323.

[35] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng Cheng,
Jiansong Zhang, Enhong Chen, Thomas Moscibroda, Multi-path transport for
{RDMA} in datacenters, in: 15th {USENIX} Symposium on Networked Systems
Design and Implementation, {NSDI} 18, 2018, pp. 357–371.

[36] Graham Cormode, S. Muthukrishnan, An improved data stream summary: the
count-min sketch and its applications, J. Algorithms 55 (1) (2005) 58–75,
http://dx.doi.org/10.1016/j.jalgor.2003.12.001.

[37] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, Scott Shenker, Revisiting network support for RDMA,
in: Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication, 2018, pp. 313–326.

http://refhub.elsevier.com/S1389-1286(25)00056-8/sb11
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb11
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb11
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb11
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb11
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb11
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb11
http://arxiv.org/abs/1802.05799
http://dx.doi.org/10.1177/1094342005051521
http://dx.doi.org/10.1145/2999572.2999593
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb15
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb15
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb15
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb15
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb15
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb15
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb15
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb16
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb16
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb16
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb16
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb16
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb16
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb16
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb17
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb17
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb17
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb17
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb17
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb18
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb18
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb18
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb18
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb18
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb18
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb18
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb19
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb19
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb19
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb19
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb19
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb20
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb20
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb20
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb22
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb22
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb22
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb22
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb22
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb23
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb23
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb23
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb23
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb23
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb23
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb23
http://dx.doi.org/10.1145/2535372.2535375
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb25
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb25
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb25
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb25
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb25
http://dx.doi.org/10.1145/2785956.2787507
http://dx.doi.org/10.1109/ICCCN.2019.8847077
http://dx.doi.org/10.1109/ICCCN.2019.8847077
http://dx.doi.org/10.1109/ICCCN.2019.8847077
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb28
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb28
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb28
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb28
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb28
http://dx.doi.org/10.1145/3544216.3544226
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb31
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb31
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb31
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb31
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb31
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb32
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb32
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb32
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb32
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb32
http://dx.doi.org/10.1145/3627703.3650062
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb34
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb34
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb34
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb34
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb34
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb35
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb35
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb35
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb35
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb35
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb35
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb35
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb37
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb37
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb37
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb37
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb37
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb37
http://refhub.elsevier.com/S1389-1286(25)00056-8/sb37

	Reunion: Receiver-driven network load balancing mechanism in AI training clusters
	Introduction
	Background and Motivation
	Fine-grained Network Load Balancing is Necessary in AI Training
	Rerouting Decisions May Introduce New Hash Collisions
	Rerouting Decisions Impact Smaller Flows
	Flowlet Timeout Value Is Hard to Choose

	Design and Algorithms
	Header Fields and Parameters
	Elephant Flow Detection
	Hash Collision Detection Phase
	High Link Utilization Detection Phase
	Notification Phase
	Rerouting Phase
	The Impact of Out-of-Order Packets

	Evaluation
	Reduction on Tail FCT
	Robustness
	When Allowing Out-of-order Packets
	Compatibility with Flow Slicing

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


