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Abstract
Clos networks have witnessed the successful deployment

of RoCE in production data centers. However, as DCN band-
width keeps increasing, building Clos networks is becoming
cost-prohibitive and thus the more cost-efficient expander
graph has received much attention in recent literature. Unfor-
tunately, the existing expander graphs’ topology and routing
designs may contain Cyclic Buffer Dependency (CBD) and
incur deadlocks in PFC-enabled RoCE networks.

We propose Flattened Clos (FC), a topology/routing co-
designed approach, to eliminate the PFC-induced deadlocks
in expander networks. FC’s topology and routing are designed
in three steps: 1) logically divide each ToR switch into k
virtual layers and establish connections only between adjacent
virtual layers; 2) generate virtual up-down paths for routing;
3) flatten the virtual multi-layered network and the virtual
up-down paths using graph contraction. We rigorously prove
that FC’s design is deadlock-free and validate this property
using a real testbed and packet-level simulation. Compared to
expander graphs with the edge-disjoint-spanning-tree (EDST)
based routing (a state-of-art CBD-free routing algorithm for
expander graphs), FC reduces the average hop count by at
least 50% and improves network throughput by 2−10× or
more. Compared to Clos networks with up-down routing, FC
increases network throughput by 1.1−2× under all-to-all and
uniform random traffic patterns.

1 Introduction

Driven by the need of low latency, high throughput and low
CPU overhead, large Internet service providers such as Mi-
crosoft and Alibaba have deployed RDMA over Commodity
Ethernet (RoCE) [14, 20] in their Clos data centers. RoCE
requires a lossless network for optimal performance. To avoid
packet loss in Ethernet, Priority-based Flow Control (PFC) is
usually enabled to perform a hop-by-hop flow control to avoid
exhausting switch buffers by upstreaming flows. However,
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enabling PFC introduces the risk of deadlocks, especially for
the large-scale deployment of RoCEv2. Thanks to the layered
structure of Clos data centers, the up-down routing in Clos net-
works can prevent deadlocks with proper safety mechanisms
under normal operations [20] and failure scenarios [24].

However, as the data center traffic and the network band-
width keep increasing, building Clos topologies is becom-
ing cost-prohibitive [4]. In order to reduce the network cost,
flatter expander graphs, such as Jellyfish [46], SlimFly [5],
Xpander [50], FatClique [54], etc., have been proposed to
build data centers. A recent study [36] shows that a full
throughput expander uses 25% fewer switches than a full
throughput Clos. Note that the throughput values of expander
graphs are attained using a multi-commodity flow formula-
tion based on the K-Shortest Path (KSP) routing [53]. Un-
fortunately, the KSP routing in expander graphs may contain
Cyclic Buffer Dependency (CBD), and thus could incur se-
vere PFC deadlocks. Therefore, the performance-gain or cost-
reduction of expander graphs over Clos becomes questionable
for RoCEv2 traffic.

The key to supporting RoCE in expander graphs is to
eliminate CBD. Approaches to eliminate CBD can be gen-
erally grouped into three classes. The first approach is to
assign different lossless priorities for packets at different
hops [12, 15, 27]. This approach has been widely adopted
in HPCs, in which the underlying Infiniband network sup-
ports 15 lossless priorities (a.k.a. Virtual Channel). However,
due to the limited switch buffer space, data center switches
can support at most two or three lossless priorities [20]. The
second approach is to disable PFC and redesign RoCE to work
with lossy networks, e.g., NDP [21], IRN [35], FatPaths [6],
etc. However, lossy RoCE requires hardware support. For
example, Mellanox ConnectX-4 onwards NICs support lossy
RoCE, but Mellanox ConnectX-3 NICs do not. In addition,
lossy RoCE may incur higher latency for mice flows, espe-
cially when a sender has to rely on a timeout to retransmit
a lost packet. iWarp [41] is another RDMA technology that
runs on lossy networks. However, its performance is poor
because it relies on TCP to guarantee lossless delivery.



The third approach is to design a routing solution that is
fundamentally free of CBD, just as the up-down routing in
Clos. Along this direction, TCP Bolt [48] and DF-EDST [47]
were proposed, and the key idea is to find as many edge dis-
joint spanning trees (EDST) in an expander graph as possible
and then route each packet in one of the spanning tree from
its source to its destination. The EDST-based routing is CBD-
free, but its throughput performance is poor. The key reason is
that the EDST-based routing cannot effectively utilize all the
network resources: 1) the average path length is usually large
and increases quickly with network size; 2) some network
links could remain idle as they do not belong to any EDST.

Our work called Flattened Clos (FC) offers a novel
topology-routing co-design to eliminate CBDs in RoCE net-
works. FC’s topology is essentially a random regular graph
that is mappable to a multi-layered topology. We construct
FC’s topology in two steps: 1) virtually split each ToR switch
into k virtual switches, each of which belongs to a virtual layer,
and 2) randomly interconnect the layer-i (i = 2, ...,k−1) vir-
tual switches to the layer-(i−1) and the layer-(i+1) virtual
switches. The multi-layered virtual structure of FC allows per-
forming up-down routing based on virtual layers. To this end,
we propose the Edge-Disjoint Virtual Up-Down Routing for
FC. For every source-destination pair, FC’s routing transforms
the path-finding problem into a min-cost-flow problem and
then finds the maximum number of edge-disjoint paths. We
analyze FC’s design as follows to demonstrate its feasibility:

1. We offer a theoretical guidance for choosing the right
number k of virtual layers when constructing FC’s topol-
ogy (see the strategy (*) in Section 3.2.3), and validate
the strategy via numerical analysis.

2. We prove that FC’s routing is CBD-free, and thus is
deadlock-free. In fact, FC’s topology and routing paths
can be viewed as contracted graphs of a virtual multi-
layered network and virtual up-down paths. This graph
contraction operation preserves the CBD-free property.

3. We show that FC’s cabling complexity can be dramati-
cally reduced by introducing a layer of Patch Panels (PP)
or Optical Circuit Switches (OCS) to interconnect all
the ToR switches. Admittedly, having this PP/OCS layer
increases cable length and cable cost. As network size be-
comes large, the overall network cost of FC is still lower
than that of Clos under similar bisection bandwidth.

4. We demonstrate that FC outperforms expander graphs
with EDST routing [47, 48] (the state-of-art CBD-free
routing for expanders). Specifically, FC reduces the av-
erage hop count (AHC) by at least 50% and increases
network throughput by 2−10× or more.

5. We compare the throughput performance between FC
and Clos networks with up-down routing, built using
the same number of hosts and electrical switches. FC

achieves 1.1−2× throughput for all-to-all and uniform
random traffic patterns, but its near-worst throughput is
lower. We argue that when OCSs are used to construct
FC, vendors do not have to worry much about FC’s near-
worst throughput. By simply generating a different FC’s
topology, one can avoid matching an FC’s topology with
its near-worst traffic patterns.

6. We validate that FC is deadlock free using a small test
bed and a packet-level simulator, even under extreme
(but practical) cases where congestion control is disabled
and switches are misconfigured with a very small PFC
PAUSE threshold. In contrast, we see deadlocks trig-
gered under shortest-path routing and thus ECMP&KSP
routing is not safe.

2 Background & Motivation

2.1 Deploy RDMA over Ethernet in Clos

Clos network, a.k.a. fat-tree, was proposed for data center net-
work (DCN) architecture in [3], and has become the de-facto
standard for large service providers, such as Google [45], Mi-
crosoft [19], Facebook [44], etc. TCP/IP is the dominant trans-
port/network stack in today’s data centers. However, the tradi-
tional TCP/IP stack cannot offer high throughput (> 40Gbps
or more) and ultra-low latency (< 10us per hop) for modern
data center applications such as cloud storage, deep learning
framework and database [20, 30, 57]. Therefore, data center
operators, e.g., Microsoft [20], Alibaba [30], etc., have started
large-scale deployment of RDMA in Clos data centers to
attain better network performance.

RDMA is a hardware offloading technology that offers sev-
eral benefits such as high throughput, low latency and low
CPU overhead by bypassing the host networking stack. HPC
community has long used RDMA in special-purpose clus-
ters, and deployed RDMA using Infiniband (IB) technology.
However, modern data centers are built with IP and Ethernet
technologies. For technical and economical reasons, RoCE
was proposed for RDMA deployment in data centers.

The commonly used RoCE protocol is RoCEv2. RoCEv2
encapsulates an RDMA transport packet within a UDP packet
to be compatible with the existing networking infrastructure
of data centers. RoCEv2 was initially designed to run on a
lossless network, which can be guaranteed by enabling the
Priority-based Flow Control (PFC) [25]. Admittedly, there
have been advanced RoCE designs, e.g., Resilient RoCE,
IRN [35], etc., that could work with a lossy network. However,
supporting RoCE in lossy networks requires handling packet
retransmission using time out, selective ack, etc., which may
not only complicate the NIC design, but also hurt network la-
tency and throughput performance. As a result, lossy RDMA
may not be able to substitue lossless RDMA in all cases. In
this paper, we focus on lossless networks to support RoCEv2.
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Figure 1: Key technologies of supporting RoCE in a lossless Clos network.

2.1.1 Priority-based Flow Control (PFC)

PFC is a hop-by-hop flow control approach to prevent switch
buffer overflow, which is the primary cause of packet loss in
data centers. As shown in Fig. 1(a), the downstream switch
sends a PAUSE frame to its upstream switch when its ingress
queue length exceeds a certain threshold (XOFF). The up-
stream switch stops transmission after receiving the PAUSE
frame. A RESUME frame is sent when the downstream queue
drains below another threshold (XON). It takes some time
for the upstream switch to react to the PAUSE frame and
stop transmission. So the downstream switch needs to re-
serve some buffer space to accommodate the packets sent
by the upstream switch during this time. The buffer space is
called headroom. PFC can guarantee zero packet loss when
the headroom size is configured correctly. Typically, data
center switches can support at most two or three lossless pri-
orities [20] due to the buffer size limit. Although the switch
buffers keep increasing, the data center link bandwidth has
been increasing much faster and the buffer/bandwidth ratio
is actually decreasing over time [18]. Hence, we believe that
supporting more lossless priorities can be even more difficult
for the foreseeable future.

2.1.2 PFC-induced Deadlocks

PFC can raise some performance issues such as unfairness,
PFC storms and deadlocks [14, 20, 30, 57]. Specifically, the
PFC-induced deadlocks may hinder the large-scale deploy-
ment of RoCEv2. When cyclic buffer dependency (CBD)
exists, deadlocks can be triggered by PFC PAUSEs [23], caus-
ing packets to wait indefinitely for buffer resources [48]. As
shown in Fig. 1(b), four switches SA,SB,SC,SD have reached
the PFC threshold and start to send PAUSE frames; then the
network is trapped into a deadlock and no switch can make
any progress. Note that, the PFC-induced deadlock cannot go
away once it occurs even if we restart all the servers.

Deadlock recovery is a common approach to combat dead-
locks. It contains two steps: deadlock detection and deadlock
resolution. Traditional approaches detect deadlocks in the
control plane [34]. However, these solutions cannot react to
deadlocks quickly enough due to the large communication

latency between data planes and control planes. A recent
work, ITSY [51], could detect deadlocks in the data plane
and achieve at least 3.2× faster detection speed. However,
ITSY requires programmable switch hardware (e.g., P4) sup-
port. As for deadlock resolution, temporary rerouting [34] is a
common approach, but may create new congestion and dead-
locks. ITSY [51] tried to resolve deadlocks completely in the
data plane without rerouting, but the proposed solutions either
incur packet loss or cannot efficiently handle concurrent dead-
locks. To sum up, existing deadlock recovery mechanisms are
not ideal. As a result, deadlock prevention has received much
attention in the recent literature.

2.1.3 Avoiding Deadlocks in Clos Networks

Large vendors have gained years of experience in deploying
RDMA in Clos data centers [20]. The following strategies are
adopted to avoid deadlocks:

1. Perform up-down routing, which is CBD and deadlock-
free under normal network conditions in Clos networks.
(Note that containing a CBD is a necessary condition
to have deadlocks.) As shown in Fig. 1(c), the paths of
h1 → h5 and h2 → h4 obey the “up-down” rule and are
allowed; but the path of h6 → h10 contains a “down-up”
segment and thus is not allowed.

2. Do not put multicast and broadcast packets into lossless
classes. It was reported in [20] that ARP broadcasts+up-
down routing can cause PFC deadlocks.

3. Use a different lossless class for rerouted packets upon
network failures. [24] shows that packet rerouting may
break the “up-down” rule and trigger PFC deadlocks.

2.2 From Clos to Expander
Despite of the success of deploying Clos data centers, how-
ever, a Clos network is inherently suboptimal in terms of
bandwidth provision. As the Ethernet speed keeps increas-
ing, the network cost, especially the power consumption of
Clos networks, is becoming prohibitively high [4]. To reduce



the network cost, researchers have started seeking for more
cost-effective network architectures.

One of the promising alternative for DCNs is expander
graph. As shown in Fig. 2, expander graphs adopt a flat topol-
ogy design: servers connect to ToR switches and these ToRs
are directly interconnected without a layered structure. Exam-
ples of expander graphs include Jellyfish [46], SlimFly [5],
Xpander [50], FatClique [54], etc. Expander graphs is more
cost-effective for bandwidth provision than Clos networks.
Using KSP routing, a full throughput expander uses 25%
fewer switches than a full throughput Clos [36]. The network
performance of expander graphs was also studied under other
routing protocols, including ECMP, Valient Load Balancing
(VLB) and a hybrid of the two [28]. However, none of these
widely studied routing strategies is CBD-free.

2.2.1 ECMP/KSP are not CBD-free in Expanders
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Figure 2: An expander graph.

Consider the expander graph in Fig. 2. This expander is a
random regular graph with 4 inter-ToR links per ToR. Con-
sider the four ToRs A,B,C,D and the shortest paths for A→C,
B → D, C → A, D → B. Assume that there is a flow routed
along the shortest path A → B →C. Then, if the egress port
at link (B,C) is paused, the egress port at link (A,B) will
be paused. If there is another flow routed along the short-
est path D → A → B, since the egress port at link (A,B) is
paused, the egress port at link (D,A) will also be paused. Sim-
ilarly, if we have another two flows routed along the shortest
paths C → D → A and B → C → D, then the egress ports
at link (C,D) and link (B,C) will be paused. Now, we find
a CBD in this expander graph under shortest-path routing.
To sum up, when there are 4 flows routed along the paths
A → B → C,D → A → B,C → D → A and B → C → D, if
one of the egress ports (A,B),(B,C),(C,D),(D,A) is paused
for a sufficiently long time, a deadlock will be triggered.

The above analysis indicates that shortest-path routing is
not CBD-free. Now we consider ECMP and KSP routings.
ECMP uniformly split traffic among all the shortest paths,
while KSP split traffic among the first K shortest paths. (To
improve network performance under ECMP/KSP, one can
also optimize the path weights using a multi-commodity flow
formulation.) Under ECMP or KSP routing, it is still possible

to have four flows taking the paths A → B → C,D → A →
B,C → D → A and B →C → D in the above example. There-
fore, both ECMP and KSP routings are not CBD-free. Using
the same approach, we can prove that the VLB routing and
the hybrid of ECMP&VLB in [28] are not CBD-free, either.

2.2.1.1 Probability of Containing CBDs
We further analyze the probability of an expander graph con-

taining CBDs under different traffic patterns. We generate two
classes of expander graphs, Jellyfish [46] and Xpander [50].
In each expander graph, each ToR switch has 5 ports con-
nected to other ToRs. For each expander graph, we evaluate
two classes of traffic patterns under shortest-path routing (the
algorithm that determines if a set of paths is CBD free in a
given topology is offered in Appendix A.2):
All to All: Every source-destination pair has an on-going
flow. This represents the most-likely case of having CBDs.
Uniform Random-p: Every ToR randomly picks p fraction
of ToRs to communicate. This represents practical DCN traf-
fic patterns in which the majority of traffic of a server is often
destined to a few racks [44].
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Figure 3: Jellyfish and Xpander CBD analysis.

The results are depicted in Fig. 3. We can see that as the
number of ToRs increases, the CBD probability quickly in-
creases to one and Xpander graphs are more likely to en-
counter CBDs than Jellyfish graphs. Note that even under
shortest-path routing (ECMP), the CBD probability becomes
one with only tens of ToR switches. Other routing algorithms,
including KSP, VLB, etc., contain even higher CBDs.
Remark on the necessity of eliminating CBDs: Even if the
probability that the ECMP/KSP/VLB routing policies lead to
CBDs is close to 1, the possibility that these CBDs eventu-
ally turn into deadlocks may not be that high. Nevertheless,
eliminating CBDs can be still important. Some network appli-
cations requires five-nines availability, which means that the
maximum downtime in a month must be less than 26.3 sec-
onds. As long as the deadlock probability is non-zero, when a
data center runs for a long time, a deadlock may be triggered
eventually and hurts the overall system availability.
Remark on Tagger’s approach: Given any routing paths,
Tagger [24] offered a generic approach to eliminate CBDs.
The key idea is to break each path into several segments



and assign each segment a lossless priority. As long as the
path segments belonging to the same lossless priority are
CBD-free, the entire network is CBD-free. Unfortunately, this
approach may require too many lossless priorities to eliminate
CBDs in large expander networks.

3 Flattened Clos

We propose a new class of expander graphs, called Flattened
Clos (FC), for efficient deadlock prevention. Our design is
motivated by the CBD-free up-down routing in Clos networks
and the flattened butterfly topology [29]. FC is a topology built
on top of ToR switches. The key idea of FC is to split each
ToR switch into a few virtual switches, and assign each virtual
switch a virtual layer id. By creating links only between vir-
tual switches in adjacent virtual layers, FC can adopt virtual
up-down routing to avoid deadlocks. The detailed topology
and routing designs of FC are described below.

3.1 Topology
We study a data center network with N ToR (Top of Rack)
switches S = {S1,S2, ...,SN}. Each switch has p = s+h ports,
h of which connected to the hosts and s of which connected
to other ToRs. We construct an FC topology in two steps:
Step 1: Splitting Virtual Switches. To create an FC with k
virtual layers, we logically split each switch Si, i = 1,2, ...,N
into k virtual switches, and label these virtual switches as
S1

i ,S
2
i , ...,S

k
i . The virtual switch S j

i belongs to the j-th layer,
and has l j number of links to connect to other switches. The
total link count of the virtual switches S1

i ,S
2
i , ...,S

k
i is equal to

the total link count of Si that connect to other ToRs, i.e.,

k

∑
j=1

l j = s. (1)

Step 2: Random Wiring. For each j = 1,2, ...,k − 1, we
randomly generate a bipartite graph between the virtual
switches in layer j and the virtual switches in layer j + 1.
Let a j, j = 1,2, ...,k−1 be the degree of each virtual switch
in the j-th random bipartite graph. We must have

l1 = a1, l2 = a1 +a2, ..., lk−1 = ak−2 +ak−1, lk = ak−1. (2)

When we generate random bipartite graphs, we never create
links between S j

i and S j+1
i for i = 1,2, ...,N, j = 1,2, ...,k−1.

The reason is that S j
i and S j+1

i actually belong to the same
switch, and there is no need to create a link in between.

3.1.1 Theoretical Topology Properties of FC

In an FC’s topology, each ToR switch has s links connected to
other ToRs. Thus, FC falls into the category of random regular
graphs (RRG). Here, we restate some useful theoretical results
for RRGs in literature, which also applies to FC.

We represent a network by G = (V,E), where V is the
vertex set and E is the edge set. The bisection bandwidth of G
can be characterized by Edge Expansion, which is defined as
EE(G) = min|S|≤N

2

|∂S|
|S| , where N is the number of vertices in

V , S is a subset of V , |S| is the size of S, ∂S is the set of edges
leaving S. The Edge Expansion of an s-regular graph is upper
bounded by s/2 [50]. The following theorem indicates that
random regular graphs attain near-optimal edge expansion.

Theorem 1 (Near-optimal Edge Expansion [7]) For every
s ≥ 3 and 0 < η < 1 satisfying 24/s < (1−η)1−η(1+η)1+η,
almost every s-regular graph G has its edge expansion

EE(G)≥ (1−η)s/2.

Given a traffic matrix T = [tuv], where tuv is the amount
of requested flows from ToR switch u to ToR switch v. The
throughput α(G,T ) of a network G under the traffic matrix
T is defined as the maximum value θ(T ) for which T ·θ(T )
is feasible in G. The following two theorems guarantee that
random regular graphs achieve good throughput under both
uniform and adversarial patterns.

Theorem 2 (High throughput under all-to-all pattern [50]):
For the all-to-all traffic pattern Tall-to-all, almost every s-
regular graph G achieves a throughput

α(G,Tall-to-all)≥
1

O(logs)
α(G∗,Tall-to-all),

where G∗ is the s-regular graph that attains the optimal
throughput under Tall-to-all.

Theorem 3 (Resilience to adversarial patterns [50]): For
almost every s-regular graph G and every traffic pattern T ,
the throughput α(G,T )≥ 1

O(logN)α(G∗,T ), where G∗ is the
s-regular graph that attains the optimal throughput under T .

3.2 Routing
3.2.1 Edge-disjoint Virtual Up-down Routing

Although FC’s topology exhibits high network throughput
in theory, such a throughput may not be achievable in PFC-
enabled RoCE networks due to the potential risk of deadlocks.
To completely eliminate the risk of deadlocks, we propose the
CBD-free Edge-disjoint Virtual Up-down Routing. This
routing strategy computes paths in three steps:
Step 1: Construct a Multi-layered Virtual Topology. Ac-
cording to the construction of FC’s topology, each FC’s topol-
ogy is mappable to a multi-layered topology. Consider the
toy example in Fig. 4(a). While we construct this topology,
we have virtually divided each ToR switch Si into k = 3 sub-
switches S1

i ,S
2
i and S3

i . The first port of Si belongs to S1
i ; the

second and the third ports belong to S2
i ; the fourth port belongs

to S3
i . It is easy to check that each edge in Fig. 4(a) corre-

sponds to a solid line in Fig. 4(b). Note that the k sub-switches
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Figure 4: FC’s topology and routing design.

S1
i ,S

2
i , ...,S

k
i can communicate with each other, because they

belong to the same physical switch. Hence, we also create an
edge between S j

i and S j+1
i for every j = 1,2, ...,k−1 (see the

dashed lines) in Fig. 4(b).
Step 2: Construct a Directed Virtual Up-Down Topology.
Our objective is to find the maximum number of virtual up-
down paths in the multi-layered virtual topology. To enforce
this “up-down” constraint, we further convert the undirected
multi-layered graph in Fig. 4(b) to a directed virtual up-down
graph in Fig. 4(c). Specifically, we first split each virtual node
S j

i ( j < k) into one “up node” Si, j
u and one “down node” Si, j

d in
the directed up-down graph. (Note that we do not split the top
layer virtual nodes Sk

i .) We then map each link in Fig. 4(b) to
two directed links in Fig. 4(c): each undirected link (Sk−1

i1 ,Sk
i2)

in the top layer (see the red line in Fig. 4(b) as an example) is
mapped to two directed links (Si1,k−1

u ,Sk
i2) and (Sk

i2 ,S
i1,k−1
d );

each undirected link (S j−1
i1 ,S j

i2) ( j = 2, ...,k−1) (see the blue
line in Fig. 4(b) as an example) is mapped to two directed
links (Si1, j−1

u ,Si2, j
u ) and (Si2, j

d ,Si1, j−1
d ).

Step 3: Compute CBD-free Paths. For every source-
destination pair (Si,S j), we first find a path set Pi j with the
maximum number of virtual up-down paths from the node
Si,1

u to the node S j,1
d in the directed virtual up-down topology

using min-cost max-flow (see Appendix A.1 for more details).
In this set Pi j of paths, each solid link is used at most once
while each dashed link can be used multiple times. Then,
for every path P ∈ Pi j, we map it to a path in FC’s topology
(Fig. 4(a)). For example, as shown in Fig. 4(c), we find one
up-down path S2,1

u → S2,2
u → S3

3 → S3,2
d → S3,1

d (marked with
green) for the source-destination pair (S1,S2). Since S2,1

u , S2,2
u

are from the ToR switch S2 and S3
3, S3,2

d , S3,1
d are from the ToR

switch S3, this path can be contracted to S2 → S3 in the FC’s
topology. Since each solid link is used at most once in Pi j, the
resulting paths in the FC’s topology must be edge-disjoint.

3.2.2 FC’s Routing is CBD Free

In FC’s edge-disjoint virtual up-down routing, we first com-
pute an up-down path set Pi j based on the directed virtual

up-down topology, and then contract all the paths in Pi j to
obtain the final paths for FC’s topology. Let P = ∪i, jPi j be
the set of virtual up-down paths obtained from the directed
virtual up-down topology. According to Theorem 8 in Ap-
pendix A.2, P is CBD free. In order to prove that the final set
of paths in FC’s topology is CBD free, we need the following
definition and lemma (see Appendix A.2.1 for the proof).

Definition 1 Given a set of nodes V , {V1,V2, ...,Vm} is called
a partition of V , if the following conditions are met: 1) Vm1 ∩
Vm2 = /0 for every m1 ̸= m2; 2) V1 ∪V2 ∪·· ·∪Vm =V .

Lemma 4 Given a graph G(V,E), a path set P and a
partition {V1,V2, ...,Vm} of V , a graph and path set pair
(Ĝ(V̂ , Ê), P̂ ) is called a contraction of (G(V,E),P ) if

1. every node in v̂i ∈ V̂ corresponds to the vertex set Vi;

2. the number of edges between v̂i and v̂ j is the same as the
total number of edges between Vi and Vj in G(V,E);

3. each path P̂ ∈ P̂ is a contraction of a path P ∈ P , i.e., P̂
is obtained by first replacing each vertex in P by a vertex
in V̂ and then removing cycles and duplicated vertices.

Then, if the path set P is CBD-free in G(V,E), the path set P̂
must be CBD-free in Ĝ(V̂ , Ê).

Apparently, FC’s topology and routing path set can be
viewed as a contraction of the directed virtual up-down topol-
ogy and the corresponding virtual up-down path set P . Since
the path set P is CBD free in the directed virtual up-down
topology, then according to Lemma 4, we immediately know
that FC’s routing path set is CBD free.

3.2.3 How Routing Affects FC’s Topology Design?

We have described FC’s routing and topology designs. Note
that there is a critical parameter k in the design. If k is not
properly chosen, FC’s routing policy may not be able to find a
path for some switch pair, thus hurting the connectivity of FC.
In this section, we offer a theoretical guideline to determine
the number of virtual layers in FC.



Number of Switches Number of Servers kmin k
Average Number of Edge
Disjoint Up-down Paths

Average Path Length of Edge
Disjoint Up-down Paths

Minimum Number of
Edge Disjoint Up-down Paths

500 12000 3 3 10.05 4.29 4.00
4 16.08 4.57 12.00

1000 24000 3 3 7.10 4.43 1.00
4 14.01 4.86 9.00

2000 48000 4 4 11.85 5.13 7.00
5 15.77 5.36 11.00

3000 72000 4 4 10.63 5.30 6.00
5 14.66 5.54 10.00

5000 120000 4 4 9.17 5.52 3.00
5 13.28 5.75 9.00

Table 1: Choosing the right k for FC.

Lemma 5 Let x be the number of ancestors in the virtual
layer k for each layer-1 virtual node. If x >

√
(2+ ε)N lnN,

where ε > 0 is an infinitesimal value, then as N →+∞, with
probability 1, every pair of layer-1 virtual nodes has a com-
mon ancestor in the virtual layer k.

Proof 1 We use Ai j to denote the event that the virtual nodes
S1

i and S1
j have no common ancestor in the virtual layer k.

Then, the probability that Ai j happens is

P(Ai j) =
Cx

N−x

Cx
N

≤ (1− x
N
)x

<

(
1−

√
(2+ ε) lnN√

N

)√(2+ε)N lnN

=

(1−
√
(2+ ε) lnN√

N

) √
N√

(2+ε) lnN


(2+ε) lnN

< (1/e)(2+ε) lnN = N−(2+ε).

Let A be the event that at least one pair of virtual nodes in
layer 1 has no common ancestor in layer k. Then,

P(A) = P(∪i ̸= jAi j)≤ ∑
i̸= j

P(Ai j)

=
N(N −1)

2
×N−(2+ε) <

1
2

N−ε.

Then, limN→+∞ P(A) = 0. This completes the proof.

Based on FC’s routing, it is easy to calculate that the num-
ber of distinct up-paths from a virtual node in layer 1 is
(a1 + 1)(a2 + 1) · · ·(ak−1 + 1), which is an upper bound of
the number of ancestors in layer k. According to Lemma 5,
we can choose a k such that

(a1 +1)(a2 +1) · · ·(ak−1 +1)>
√
(2+ ε)N lnN. (3)

According to Equation (1) and (2), it is easy to obtain
∑

k−1
i=1 ai = s/2. We could choose a1,a2, ...,ak−1 to maximize

the left hand side of (3), and obtain(
1+

s
2(k−1)

)k−1

>
√
(2+ ε)N lnN. (4)

Let kmin be the smallest integer solution of (4). We could
choose a k value around kmin. As shown in Fig. 5, kmin does
not grow fast with respect to N.
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Figure 5: Relationship between kmin and network size N.

Numerical Verification: To verify the above theoreti-
cal result, we perform a numerical analysis using 64-port
ToR switches. Each ToR switch has h = 24 ports con-
nected to the hosts and s = 40 ports connected to other
ToR switches. For different number of ToR switches (N =
500/1000/2000/3000/5000), we choose k = kmin,kmin + 1,
generate an FC’s topology and count the number of distinct
virtual up-down paths. As shown in Table 1, as we increase
k, more paths can be found for every source-destination ToR
switch pairs. Note that the average path length increases with
respect to k. Hence, it is better to choose a smaller k. On the
other hand, if we choose k to be too small, some ToR switch
pairs may not have sufficient number of distinct paths. Here
we suggest a simple strategy that works well for FC:

Strategy (*): Try kmin first; if not working, try kmin +1.

For example, in the case where N = 1000,k = kmin = 3, the
minimum number of distinct paths between ToR pairs is 1.
This creates a bottleneck in the network. Hence, k = kmin +
1 = 4 will be chosen instead.

3.2.4 Computational Complexity of FC’s Routing

The main complexity comes from using the min-cost max-
flow solver to find edge-disjoint virtual up-down paths. Given
a graph G = (V,E) with n vertices and m edges, the com-
putational complexity of the min-cost max-flow algorithm
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(a) Uniform cabling through OCSs/PPs. Any inter-ToR topology is realizable
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(b) Virtual-layered cabling through OCSs/PPs. There is 1 port for virtual layer-
1 (L-1), 2 ports for L-2, and 1 port for L-3 in every switch. OCSs/PPs are
divided into 2 groups.

Figure 6: Example of cabling with the help of optical circuit switches (OCS) / patch panels (PP).

implemented in Ortools is O(m · n2 · log(n ·C)), where C is
the value of the largest link cost in the graph [1] (in our case,
C = 1). If we choose the parameters k and a1,a2, ...,ak−1 such
that (a1 +1)(a2 +1) · · ·(ak−1 +1) = Θ(

√
N logN), each vir-

tual node in the first virtual layer will be able to reach at most
Θ(k

√
N logN) virtual nodes through at most Θ(k

√
N logN)

edges. When we compute edge disjoint paths from Si to S j,
we only need to focus on a subgraph of the directed virtual
up-down topology, which contains all the nodes reachable
from Si,1

u and S j,1
d . This subgraph has Θ(k

√
N logN) nodes

and edges. Thus, the overall computational complexity is
Θ((k

√
N logN)3 · log(k

√
N logN)) = Θ(k3N3/2(logN)5/2).

3.3 Cabling

FC adopts random wiring for its topology design. However,
random wiring has long been criticized for its high cabling
complexity [50, 54]. Indeed, if we directly connect different
ToR switch pairs, the number of distinct fiber lengths would
be in the order of Θ(N2). Directly connecting ToR switches
could also increase the management complexity when we
perform data center expansion [56].

To reduce cabling complexity, motivated by TROD [9] and
Google’s Jupiter data center [40], we propose to use a set of
co-located optical circuit switches (OCS) or patch panels (PP)
to interconnect different ToR pairs and form FC’s topology.
Since these PPs/OCSs are co-located, the number of distinct
fiber lengths reduces to Θ(N). Next, we offer two strategies
to interconnect PPs/OCSs with ToR switches.
Uniform Cabling (see Figure 6(a)): Note that each ToR
switch has s ports to be connected to other ToR switches.
We use s OCSs/PPs, and construct a uniform bipartite graph
between ToR switches and OCSs/PPs. Under this cabling
strategy, it was proven in [55] (see Lemma 4 and Theorem
5 therein) that any inter-ToR topology is realizable by prop-
erly configuring the s OCSs/PPs one by one. According to
this fact, we could first generate an FC topology without con-
sidering the layer of OCSs/PPs, and then decomposite this
topology into s sub-topologies that can be mapped to each

OCS/PP. This approach reduces cabling complexity. However,
it encounters scalability challenge. Specifically, the port count
of the commercially available OCSs/PPs is on the order of a
few hundred. For example, a Calient s320 OCS [8] can offer
320 TX/RX ports. Thus, the number of ToR switches can
be at most a few hundreds. Since each ToR switch typically
connects to tens of servers, this uniform cabling strategy can
support at most a few thousands of servers.
Virtual-Layered Cabling (see Figure 6(b)): Note that FC’s
topology is designed based on the concept of virtual layers.
Assume that there are a1 ports for layer-1, a1 +a2 ports for
layer-2, ..., ak−1 +ak ports for layer-(k−1), and ak ports for
layer-k. We group all the OCSs/PPs into k− 1 groups, and
connect 2ai ports of each ToR switch to the i-th OCS/PP
group. In the i-th OCS/PP group, each OCS/PP have half of
its ports connected to ToR switches’ layer-i ports and half
of its ports connected to ToR switches’ layer-(i+1) ports. If
we enforce that every OCS/PP should connect to all the ToR
switches, we will encounter the same scalability challenge as
the uniform cabling strategy. In the virtual-layered cabling
strategy, 2ηai number of OCSs/PPs are used in the i-th group,
and each ToR switch will randomly choose 2ai OCSs/PPs in
group-i to connect its layer-i and layer-(i+1) ports. Under
this cabling strategy, the total number of ToR switches that
can be supported becomes “η× port count of an OCS/PP”.
This strategy scales well. For example, if we use 320-port
OCSs, 64-port ToR switches (assume that each ToR connects
to 24 servers), and choose η = 20, then the maximum num-
ber of servers would be 20×320×24 = 153600, which can
definitely support a large-scale data center.
Remark on the parameter η: When η > 1, a cabling con-
straint is imposed to FC when we generate the topology be-
tween adjacent virtual layers, i.e., not all topologies are real-
izable because the interconnection between ToRs and each
group of OCSs/PPs is not uniform. Fortunately, Appendix
A.5.1 shows that enabling this cabling constraint when gener-
ating FC’s topology has little impact on FC’s routing statistics.
Remark on the network cost: Compared to traditional ex-
pander graphs, having a layer of OCSs in FC reduces the
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(a) Throughput of the all to all traffic matrix. (The
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(b) Throughput of uniform random traffic matrices
(averaged over 10 runs).
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(c) Throughput of the near-worst permutation traffic
matrix.

Figure 7: Throughput simulation results under ECMP, EDST, Edge-disjoint Virutal Up-down and 32-way KSP routing.

number of distinct cable lengths, but unfortuanately increases
the total cable length. We compare the total network cost
between FC and Clos in Appendix A.4. To achieve similar
bisection bandwidth, FC and Clos have similar network cost
when the network size is small and FC’s cost becomes lower
as the network size increases to a point where 4 switch lay-
ers are required to build a Clos. In addition, FC uses fewer
number of electrical switches and thus its network power
consumption is lower.
A potential future direction: Using OCSs introduces another
interesting problem: how to design deadlock-free and traffic-
aware topology & routing policies. As reconfiguring OCSs
incurs non-negligible delay, it may not be possible to recon-
figure OCSs for every traffic-pattern change. Google’s Jupiter
data center [40] and our prior work [9, 49] both showed that
low-frequency reconfiguration might be sufficent, because the
traffic patterns in real data centers do not change arbitrarily.
Low-frequency reconfiguration may also work for lossless
RDMA networks, but requires further investigation.

4 Numerical Throughput Analysis

We numerically evaluate the throughput for FC in this section.
We evaluate two scenarios. Due to space constraints, we only
present one here and put the other one in Appendix A.5.2.

We generate FC’s topologies of different sizes using up
to 500 32-port ToR switches. Each ToR switch has 18 ports
connected to other switches and 14 ports connected to servers.
The number of virtual layers k is chosen based on the strat-
egy (*) in Section 3.2.3. For each FC’s topology, we evaluate
four routing strategies: 1) FC’s edge-disjoint virtual up-down
routing, 2) EDST routing, 3) ECMP or Shortest-Path rout-
ing, and 4) KSP routing. Given a traffic matrix T , we use a
multi-commodity flow formulation to calculate the maximum
throughput value θ(T ) such that T ·θ(T ) is feasible under the
given topology and routing paths. (For ECMP, the throughput
is also calculated based on the multi-commodity flow formu-
lation. Evenly spreading traffic among all the shortest paths
may yield very poor throughput.) In addition, for each FC’s
topology, we also compare it with a Clos network generated
using roughly the same number of switches with throughput

optimized (see Appendix A.3).
We compute throughput values under all-to-all traffic pat-

terns, uniform random traffic patterns and near-worst traffic
patterns. In an all-to-all pattern, each server sends an equal
amount of traffic to all other servers. In a uniform random
pattern, each ToR randomly picks 10% of ToRs to communi-
cate. To generate near-worst patterns, we 1) first construct a
complete bipartite graph B with N source nodes and N desti-
nation nodes, where the weight of the edge (s,d) is the length
of the shortest path from ToR s to ToR d; 2) and then find the
permutation matrix with the maximum weight. This approach
was also adopted in [26, 36] to generate near-worst patterns.
We believe that the above three classes of traffic patterns of-
fer an adequate coverage of real data center traffic patterns.
The uniform random pattern is highly representative in real
data centers. Indeed, Google’s data center traffic patterns are
approximately uniform random [40]. The all-to-all pattern is
widely used in MPI communication. The near-worst pattern
allows us to understand network’s performance lower bound.

4.1 FC’s Routing vs EDST Routing

The EDST routing is CBD-free for expander graphs. A ran-
dom s-regular graph has s/2 edge-disjoint spanning trees with
high probability [38]. Thus, EDST is a direct competitor of
the Edge-disjoint Virtual Up-down Routing for FC’s topology.

As shown in Fig. 7, FC’s edge-disjoint virtual up-down
routing (denoted by “DISJOINT UP-DOWN”) performs con-
sistently better than EDST for all the traffic patterns. When the
network is small (N = 50), FC’s routing achieves 2× through-
put of the EDST routing. As the network size increases, the
performance of the EDST routing deteriorates quickly. When
N = 500, the performance gain of FC’s routing becomes 10×
and the gain keeps increasing with the network scale.

There are two reasons that lead to the poor performance of
the EDST routing. First, existing edge-disjoint spanning tree
(EDST) algorithms [42, 43] can find the maximum number
of spanning trees, but there is no guarantee that the height of
each spanning tree found is small. When we perform routing
in a tall spanning tree, the average hop count would be large.
This is also justified in the following routing-path analysis.



Number of Switches Number of servers k
Port Count of

Virtual Switches Routing
Average Number

of Paths
Average Path

Length
Average Shortest

Path Length

50 700 4 [3, 6, 6, 3] Edge Disjoint Up-down 8.02 3.86 2.68
EDST 9.00 7.69 3.12

100 1400 4 [3, 6, 6, 3] Edge Disjoint Up-down 6.43 4.22 3.04
EDST 9.00 10.01 4.04

200 2800 4 [3, 6, 6, 3] Edge Disjoint Up-down 4.99 4.56 3.44
EDST 9.00 14.01 5.50

300 4200 4 [3, 6, 6, 3] Edge Disjoint Up-down 4.24 4.75 3.70
EDST 9.00 16.70 6.52

500 7000 5 [2, 4, 4, 5, 3] Edge Disjoint Up-down 4.55 5.22 4.00
EDST 9.00 21.96 8.14

Table 2: Edge-Disjoint Virtual Up-down Routing vs. the EDST Routing (32-port Switches are Used).

Second, some links remain unused in the EDST routing. In
an expander graph with N ToR switches, each spanning tree
contains N − 1 links. Note that the total number of ToR-to-
ToR links is Ns/2. When Ns/2 is not divisible by N−1, there
must be links not used by any spanning tree.
Routing-Path Analysis: For several FC’s topologies of dif-
ferent sizes (N = 50/100/200/300/500), we analyze the rout-
ing paths under FC’s routing and the EDST routing. We calcu-
late three metrics, including average number of paths, average
length of paths and average length of the shortest paths. As
shown in Table 2, although the EDST routing could find more
paths than FC’s routing, its average path length is much higher.
When N = 50, the average path length under FC’s routing is
1−3.86/7.69≈ 50% lower than that under the EDST routing.
As N increases to 500, the reduction of average path length
becomes 1−5.22/21.96 ≈ 76%. We expect that this number
will continue to increase for larger networks. The EDST rout-
ing cannot guarantee a small routing path length. In contrast,
the parameter k restricts that FC’s routing path length cannot
exceed 2k and k increases slowly with N.

4.2 FC’s Routing vs ECMP/KSP Routing
ECMP/KSP are widely-used routing protocols for expander
graphs. In FC’s topology, ECMP’s throughput fluctuates sig-
nificantly because ECMP cannot provide enough path diver-
sity; KSP’s throughput is more stable under different traffic
patterns. This coincides with the findings in Jellyfish [46].

Fig. 7 shows that KSP’s throughput is consistently higher
than that of the FC’s edge-disjoint virtual up-down routing.
However, deploying KSP routing in expander networks poses
a deadlock risk. We have shown in Section 2.2.1.1 that the
probability that ECMP/KSP routing contains CBDs is close
to 1. Although containing CBDs is not sufficient to trigger
deadlocks, we will show in Section 6.1 that ECMP/KSP could
indeed trigger deadlocks in certain cases in a real testbed.
How to close the throughput gap: FC uses only one lossless
queue, and its throughput performance is lower than that of
the KSP routing. The reason is that FC’s routing has lower
path diversity than the KSP routing. To improve path diversity,
we could let FC use more than one lossless queues. We will
explore this further in our future work.

4.3 FC vs Clos
Clos is the de facto standard topology for data centers and has
witnessed the successful deployment of RDMA in produc-
tion [20]. To ensure fair comparisons, given an FC’s topology
with N ToR switches and H servers, we choose a Clos net-
work that offers the maximum throughput to the H servers
using roughly the same number of switches (Appendix A.3).

As shown in Fig. 7(a) and 7(b), FC attains 1.1− 2× the
throughput of Clos networks. Note that there is a decrease in
throughput when the network size changes from 700 to 1400.
The reason is that when the switch port count is 32, we can
build a two-layered Clos to support 700 servers, but at least 3
layers are required in order for a Clos to support 1400 servers.

However, under near-worst traffic patterns, Fig. 7(c) shows
that FC’s throughput can be 15%−50% lower than that of the
Clos networks. We argue that this issue can be resolved when
a layer of OCSs is used to interconnect different ToRs. If the
real traffic pattern is close to a near-worst pattern of the current
topology, we can reconfigure the OCSs to generate a topology
that matches this traffic pattern. Then, a natural question arises.
How frequent should we reconfigure the topology? Certainly,
the answer to this question depends on the traffic patterns.
If the traffic patterns exbihit some long-term stability [40],
occasional reconfigration might be sufficient. We will study
this problem further in our future work.

5 Packet-Level Simulation

We cross-validate our throughput analysis using a packet-
level simulator [22]. We generate an FC’s topology using 144
32-port switches. Each switch has 8 ports connected to hosts
and 24 ports connected to other switches. In total, there are
1152 hosts. On top of this topology, we run FC’s routing or
the EDST routing. We also generate a Clos network using
148 32-port switches with throughput optimized. This Clos
network has 64 ToR switches, 56 aggregation switches and
28 spine switches. Each ToR has 18 ports connected to hosts
and 14 ports connected to the aggregation switches. The toal
number of hosts is still 1152. For this Clos topology, we use
up-down routing. The port speed is set as 25Gbps.



We generate three sets of flows based on the all-to-all traffic
pattern, a uniform random traffic pattern (each ToR choose
12.5% of ToRs to communicate) and the near-worst traffic
pattern. In Facebook’s data centers, the median link utilization
varies between 10% to 20% and the busiest 5% utilization of
links is between 23% to 46% [44]. Here, we set the network
load as 0.3, meaning that the maximum ingress/egress traf-
fic of each ToR is 0.3×Number of Hosts per ToR×25Gbps.
For all the flows, we enable DCQCN for congestion control.
We adopt dynamic PFC threshold such that the PFC is trig-
gered when an ingress queue consumes more than 11% of the
free switch buffer as suggested by HPCC [30]. We evaluate
performance based on the flow completion time (FCT).

We summarize the FCT results in Table 3. FC attains higher
throughput under the all-to-all pattern and the uniform random
patterns. Correspondingly, FC achieves lower FCT in the
packet-level simulation. FC’s near-worst-case throughput is
lower than that of Clos. But Fortunately, FC has lower average
hop count and thus its FCT performance is not much worse.
More detailed results are available in Appendix A.5.4.

6 Formation and Impact of Deadlocks

We study how to trigger deadlocks and understand the impact
of deadlocks via both testbed experiments and simulations.
We will show that under extreme but practical cases, FC’s
edge-disjoint virtual up-down routing is still deadlock-free;
but ECMP/KSP could trigger deadlocks.

6.1 Trigger Deadlocks in a Real Testbed
We build a small testbed using four switches, each with 8
50Gbps ports. (The four switches are virtualized from a single
CE12800 switch. The original port speed is 100Gbps and we
limit the port speed as 50Gbps.) This testbed has 16 servers,
each equipped with one Mellanox CX5 NIC with maximum
rate configured as 50Gbps. (We use PCIE-3.0×8 to connect to
the NICs, and thus these NICs cannot run at a rate higher than
64Gbps.) Each switch in this testbed has four ports connected
to other switches and four ports connected to four servers.
We virtually split each switch into 3 virtual switches, with
1,2,1 number of ports respectively. The connections between
FC’s virtual switches are shown in Fig. 4(b), and the resulting
topology is shown in Fig. 4(a). This topology can be also
viewed as a subgraph of a large expander graph (see switches
A,B,C,D in Fig. 2). If a deadlock occurs in this subgraph, a
PFC storm will quickly propogate to the entire network.

We implement ECMP, edge-disjoint virtual up-down and
EDST routings using ACL rules in our testbed. We enable
PFC to guarantee that the network is loss-free. The PFC-pause
threshold XOFF is set to 50KB and the PFC-resume thresh-
old XON is set to 47KB. Note that these PFC thresholds are
lower than the recommended values. This allows the network
to trigger more PFC pauses. As we will see shortly, the virtual
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Figure 8: Average throughput of the testbed experiment.

up-down routing is deadlock-free even in this extreme situa-
tion. Note that this setup can be viewed as a misconfiguration
of network switches. Microsoft reports that switch misconfig-
uration accounts for 38% of the high-impact failures in their
data centers [52]. In a PFC-storm incident reported also by
Microsoft [20], a switch parameter was misconfigured such
that PFC PAUSE frames could be triggered more easily.

We generate RoCEv2 traffic using the “ib_write_bw [31]”
command. For every NIC, we establish an RDMA connection
with every NIC under a different ToR switch. For example,
NIC1 under the first ToR switch sends traffic to NIC5, NIC6,
..., NIC16. In total, we establish 16×12 = 192 RDMA con-
nections. We configure the “- -run_infinitely” parameter at
the client side of each connection to run the test indefinitely
until interrupted by external.
Results: In the first experiment, we apply ECMP routing.
ECMP is not CBD-free in this testbed. We see a deadlock after
running our testbed for just a few seconds. (KSP typically
generates more paths than ECMP, and thus KSP could also
trigger deadlocks.) When deadlock happens, a large number of
RDMA connections are broken. We deep dive into the source
code of “ib_write_bw” to understand why many connections
are tear down abnormally. We found that the PFC-deadlocks
cause the verbs API “ibv_post_send” to fail and return an error
code to the main program of “ib_write_bw”. Once the main
program catch the exception code, “ib_write_bw” will stop
sending traffic and clean up the resources. Note that, if we use
dynamic PFC thresholds or use the recommended values to
set static PFC thresholds (XOFF = 800KB,XON = 797KB),
we could not observe PFC deadlocks under ECMP routing.
However, this does not eliminate the deadlock risk for ECMP.

In the second and third experiments, we set up the edge-
disjoint virtual up-down and the EDST routing respectively
to run the same test. In this case, we do not see any deadlock
even under low PFC pause/resume thresholds and all RDMA
connections can work continuously. This experiment demon-
strate that both the virtual up-down routing and the EDST
routing can avoid PFC-deadlock in lossless Ethernet.

Finally, we track the average throughput for all the 192
RDMA connections under different routing strategies over
one minute, and plot the results in Fig. 8. The virtual up-
down routing attains the highest average throughput, which
is about 50% higher than that of the EDST routing. Under
ECMP routing, the average throughput drops quickly at the



Network
Setup

Num. of
Hosts

Num. of
Switches

Copper / Fiber
Cable (km)

Num. of
Transceivers

Network Cost
(Million $)

All-to-All (load= 0.3) Uniform Random (load= 0.3) Near-Worst (load= 0.3)
Tput P50 FCT P99 FCT Tput P50 FCT P99 FCT Tput P50 FCT P99 FCT

FC 1152 144 2.3 / 55.5 3456 13.98 1.49 6.11 32.03 1.25 4.30 18.62 0.55 35.48 121.55
FC+EDST 1152 144 2.3 / 55.5 3456 13.98 0.48 12.42 99.88 0.39 196.46 509.73 0.16 7081.40 9889.53

Clos 1152 148 2.3 / 10.8 3584 10.77 0.78 11.65 44.68 0.78 6.95 39.55 0.78 42.67 118.74

Table 3: FCT Results vs. Throughput Analysis. (“Tput” is short for “Throughput”.)

first 5 seconds due to PFC deadlocks. Although the average
throughput of ECMP increases after deadlock recovery, 66%
of the RDMA connections have already failed.

6.2 Understanding Deadlocks via Simulation
We perform packet-level simulation to understand how a dead-
lock is triggered. We use the same testbed topology (Fig. 4(a))
in our simulation. We generate 192 flows at time 0, and set all
the flow sizes as 100MB. For different flows, we either disable
congestion control or enable DCQCN for congestion control.
When DCQCN is enabled, we set the ECN-marking related
parameters as Kmin = 5KB,Kmax = 200KB,Pmax = 0.01 as
suggested by the DCQCN paper [57]. To simulate the ex-
treme cases where lots of PFC pauses are triggered, we set a
small PFC-pause threshold and a small PFC-resume threshold
(XOFF = 50KB,XON = 47KB).

We evaluate ECMP and FC’s edge-disjoint virtual up-down
routing. For adjacent switch pairs, there are two paths un-
der both ECMP and FC’s edge-disjoint virtual up-down rout-
ing. For non-adjacent switch pairs, there are 8 shortest paths
(4 clock-wise paths and 4 counter-clock-wise paths) under
ECMP routing and 2 edge-disjoint virtual up-down paths (1
clock-wise path and 1 counter-clock-wise path) under FC’s
routing. We assign a path to each flow using two strategies:
Balanced Allocation: There are 16 flows generated between
every switch pair and we assign the same number of flows to
each path under both routing strategies. In this case, every link
between adjacent switch pair is shared by exactly 16 flows.
Imbalanced Allocation: Flows between adjacent switch pairs
are still equally assigned to all the paths; but flows between
non-adjacent switch pairs are only assigned to the clock-wise
paths. This situation could happen due to hashing imbalance.
In this case, every clock-wise link is shared by 24 flows,
which becomes the bottleneck of the network. Incast can thus
happen at the 4 switches. In addtion, under ECMP routing,
the following paths {[e1,e2], [e2,e3], [e3,e4], [e4,e1]} form a
CBD (actually there are more CBDs), which makes ECMP
prone to deadlocks.
Results: Under balanced allocation, we do not see deadlocks
even if we use a small static PFC threshold and disable DC-
QCN. In Fig. 9, we compare the CDFs of the FCTs (Flow
Completion Time) under both ECMP and FC’s edge-disjoint
virtual up-down routing with and without DCQCN. Both rout-
ing strategies yield similar FCT performancce.

Under imbalanced allocation, FC’s routing can still finish
all the flows and the FCT performance is shown in Fig. 9.
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Figure 9: CDF of the FCTs of ECMP and FC’s routing under
balanced/imbalanced allocation in the testbed topology.

In contrast, the ECMP routing triggers a deadlock even if
we enable DCQCN. To rootcause this issue, we record all
the PFC pauses and PFC resumes. We find 4 critical PAUSE
signals that lead to the deadlock: 1) at time 531 us, S1 sends a
PAUSE to the link e4; 2) at time 537 us, S4 sends a PAUSE to
the link e3; 3) at time 543 us, S3 sends a PAUSE to the link
e2; 4) at time 552 us, S2 sends a PAUSE to the link e1. These
events happen within just 21 us.
Takeaway: A DCN suffers from a high risk of deadlocks,
when the following three conditions are met: 1) there exist
CBDs in the network; 2) links in the CBDs are congested;
3) PFCs are triggered more frequently than usual. If we ap-
ply ECMP/KSP routing in an expander graph, we may have
to constantly monitor the congested links and the abnormal
switch behaviors. FC’s design completely eliminates CBDs,
and thus could significantly simplify the RoCEv2 deployment.

7 Discussion

7.1 Handling Link/Node Failures

Link/node failures are common in practical data centers [16].
When a link/node fails, to avoid packet drop, local rerout-
ing is performed to forward the affected packets along a
different path to the destination [32]. Unfortunately, local
rerouting may introduce CBDs and cause deadlocks even if
the original network is CBD-free [24]. Consider the Clos
network in Fig.10(a). Initially, packets from ToR A to ToR
E follow an up-down path A → B → C → D → E. When
the link DE fails, packets that arrived at the switch D can-
not find an alternative downstream path to E and thus are
bounced back to F . Then, the path from A to E becomes
A → B →C → D → F → G → E. This path contains a down-
up bounce, which could introduce CBDs into Clos networks.

To avoid deadlocks in Clos networks under link/node fail-
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Figure 10: Rerouting under link failures.

ures, Tagger [24] adds a tag to all the packets, increases the
tag on the bounce and puts packets with different tags into
different lossless queues. This approach should also work for
FC because we can treat FC as a virtual multi-layered net-
work. Nevertheless, better approach may exist for FC. In Clos
networks, every top-layer switch has a unique path to every
ToR switch and thus every packet affected by a downstream
link/node failure has to be bounced back to another top-layer
switch. In contrast, every packet affected by a link/node fail-
ure in FC can freely choose any virtual layer as long as there
is a link to forward this packet, because every virtual switch in
the same column (see Fig. 10(b)) belongs to the same physical
switch. For example, there is a flow from A to G in Fig. 10(b)
and the original path is A → B → C → D → E → F → G.
When the link EF fails, the affected packets can be rerouted
to A → B →C → D → E → H → G. This new path is still an
up-down path and thus tagging is not required. (Admittedly,
if the rerouted path contains a down-up bounce, we still need
to update the packet tags.) Based on the above analysis, we
suspect that FC could be more efficient in handling link/node
failures than a Clos network. We will explore this further in
our future work.

7.2 Handling Route Reconfiguration
Route reconfiguration is common in data centers, which could
happen when 1) new flows join/leave the network; 2) DCN

topology changes; 3) Traffic Engineering is enabled; 4) an
SDN controller reoptimizes routing paths after link/node fail-
ures. FC’s design makes it easy to handle route reconfigura-
tion. FC performs virtual up-down routing. As long as the
virtual layers remain unchanged (i.e., which ToR port belongs
to which virtual layer), the combined set of the original paths
and the post-reconfiguration paths is CBD-free. This could
dramatically simplify the workflow of route reconfiguration,
because any transient state during route reconfiguration is
guaranteed to be deadlock-free.

In rare cases, e.g., after data center expansion, we may need
to change the virtual layers because the original number of
layers may not be able to support a larger-scale network. In
this case, there could be a CBD in a transient state during
route reconfiguration. Existing solutions on deadlock-free
route reconfiguration [11, 24, 33, 39] can be applied here.

7.3 The Scalability of Routing Tables
Expander graphs, including FC, Jellyfish [46], Xpander [50],
FatClique [54], etc., face a common scalability challenge
in the switch routing tables. Unlike Clos, expander graphs
cannot easily aggregate IP addresses in the switch routing
tables due to the increased routing complexity. To resolve this
challenge, one potential solution is to design a hierachically
routing strategy, e.g., divide ToRs into groups based on their
IP prefixes and then perform intra-group and inter-group rout-
ing separately. This approach could increase the chance of
IP aggregation in the switch routing tables, but may also hurt
path diversity and load balancing efficiency. We will explore
this tradeoff further in our future work.

8 Conclusion

We present FC, a topology-routing co-designed methodol-
ogy to eliminate PFC-induced deadlocks, for cost-effective
and safe deployment of RoCEv2 over expander networks.
Motivated by the fact that the up-down routing paths of multi-
layered Clos networks are CBD-free, we design FC’s topology
to exhibit a virtual layered structure, and propose an edge-
disjoint virtual up-down routing for FC that is guaranteed
to be CBD-free. We evaluate FC against several competitors
using throughput analysis, testbed implementation and packet-
level simulation. Our evaluation results demonstrate that 1)
FC is deadlock-free while ECMP/KSP may trigger deadlocks;
2) FC significantly reduces average hop count and improves
network throughput over the state-of-art EDST-based routing
strategy; 3) FC attains higher throughput than Clos networks
built using the same number of switches under all-to-all and
uniform random patterns. These properties make FC a promis-
ing design for deadlock prevention in expander graphs.
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China (No. 61902246, 62272292 and 61960206002). We also
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A Appendix

A.1 Finding Edge-Disjoint Paths Using Min-
Cost Max-Flow

Definition 2 (Min-Cost Max-Flow Problem) Given a flow
network G(V,E) with

• u(v,w), upper bound on flow from node v to node w;

• c(v,w), cost of a unit of flow on (v,w),

and a source-destination pair (s, t), [ f (v,w)](v,w)∈E is called
a flow assignment from s to t if the following constraints are
met:

1. Capacity constraints: 0 ≤ f (v,w)≤ u(v,w);

2. Flow conservation constraints: ∑u f (u,v) = ∑w f (v,w)
for any node v ̸= s, t and ∑w f (s,w) = ∑u f (u, t) = F.
Here F is called the total amount of flow from s to t.

The objective of the min-cost max-flow problem is to find a
flow assignment [ f (v,w)](v,w)∈E with the maximum flow that
minimizes

∑
(v,w)

c(v,w) · f (v,w).

Note that the constant parameters u(v,w) are all positive
and c(v,w) can be either positive or negative. In addition,
the min-cost max-flow problem has a very nice property that
guarantees integer solutions:

Theorem 6 (Integral Flow Theorem) Given a min-cost max-
flow problem, if u(v,w)’s are all integers, then there exists
an integer solution, i.e., f (v,w)’s are all integers, such that
[ f (v,w)](v,w)∈E attains the maximum flow with minimum cost.

In fact, when we solve a min-cost max-flow problem with
integer bounds using the Scaling Push-Relabel algorithm [1,
17], the resulting optimal solution is guaranteed to be an
integer solution.
Finding Edge-Disjoint Paths: As a consequence of Theorem
6, we can find the maximum number of edge-disjoint paths
from s to t using min-cost max-flow. Specifically, let E0 be
the set of links that can be used at most once (see the solid
links in Fig. 4(c)), and E \E0 be the set of links that can
be used multiple times (see the dashed links in Fig. 4(c)).
If we set the upper bound as u(v,w) = 1 for all the links
(v,w) ∈ E0 and set the upper bound as u(v,w) = ∞ for all the
links (v,w) ∈ E \E0, then the resulting min-cost max-flow
solution [ f (v,w)](v,w)∈E can be decomposed into F (F is the
maximum flow) paths where links in E0 can be used at most
once. The F paths can be found by performing Depth First
Search F times (see Algorithm 1). Note that when we perform
DFS in line 5 of Algorithm 1, we will never encounter a cycle.
Otherwise, by removing this cycle we could obtain another
flow assignment with lower cost. Having this observation
could slightly simplify the DFS implementation. We do not
need to track the set of visited nodes during the DFS search.

Algorithm 1: Find Edge-Disjoint Paths in the Di-
rected Virtual Up-Down Graph

Input :A directed virtual up-down graph (see Fig.
4(c)) and a source-destination pair (s, t).

Output :Maximum number of edge-disjoint up-down
paths from s to t.

1 Let E0 be the set of solid lines in the directed virtual
up-down graph. Construct a flow graph by setting the
link capacity and the link cost as 1 for all links in E0,
and setting the link capacity as ∞ and the link cost as
ε (an infinitesimal value) for all links not in E0.

2 Solve the min-cost max-flow problem. Let
[ f (v,w)](v,w)∈E be the optimal solution and let F be
the maximum flow from s to t.

3 Use P to store the set of paths, and initialize P = /0.
4 for i in {1,2,...,F} do
5 Use Depth First Search to find a path P from s to t

such that f (e)≥ 1 for every edge e in P.
6 Store P in P .
7 For every edge e in P, decrement f (e) by one.
8 end
9 Return P .

A.2 A Sufficient and Necessary Condition for
CBD-Free Routing

We first introduce the concept of link dependency graph.

Definition 3 Given a network G(V,E) and a path set P =
{P1,P2, ...,PK}, a link dependency graph G′(V ′,E ′) can be
constructed as follows:

1. V ′ is the set of directed links used by at least one path
P ∈ P ;

2. For any e1,e2 ∈V ′, there is a directed link from e1 to e2
in E ′ if and only if e1 is the next hop of e2 in one path
P ∈ P .

Then, the following theorem offers a sufficient and neces-
sary condition for a set of paths to be CBD-free.

Theorem 7 Given a network G(V,E), a path set P =
{P1,P2, ...,PK} is CBD free if and only if the corresponding
link dependency graph G′(V ′,E ′) contains no loops.

Proof 2 Necessity ⇒: If the path set P is CBD free, we prove
that G′(V ′,E ′) contains no loops. We prove this by contra-
diction. Suppose that G′(V ′,E ′) contains a loop v

′
1 → v

′
2 →

...→ v
′
s → v

′
1. Let ei be the link in G(V,E) that corresponds

to v
′
i. Since e1 is the next hop of e2 in a path, if e1 is paused,

e2 will be paused. Based on the same argument, e3, ...,es will
be paused. Since es is the next hop of e1 in a path, the pause
of es will in turn pause e1. Then, a CBD is formed, which
contradicts the assumption that the path set P is CBD-free.



Sufficiency ⇐: If G′(V ′,E ′) contains no loops, we prove that
the path set P is CBD free. We again prove this by contradic-
tion. Suppose that P contains a CBD. Then, there must exist
a sequence of links e1,e2, ...,es such that ei is the next hop
of ei+1 in a path and es is the next hop of e1 in a path. Then,
the corresponding vertices of e1,e2, ...,es in G′(V ′,E ′) forms
a loop, which contradicts to the assumption that G′(V ′,E ′)
contains no loop.

According to Theorem 7, we design Algorithm 2 to check
if a set of paths is deadlock-free.

Algorithm 2: Check if a set of paths is deadlock-free
Input :A set of paths P = {P1,P2, ...,PK} and a

network G(V,E).
Output :Whether P is deadlock-free.

1 Construct a link dependency graph G′(V ′,E ′) based on
Definition 3.

2 Use deep first search to check if G′(V ′,E ′) has a loop.
3 Return true if G′ has no loop; return false otherwise.

A B

C

(a) An example network. (b) Link dependency graph.

Figure 11: Deadlock detection with a link dependency graph.

We use the example in Fig. 11 to illustrate the idea of the
deadlock detection algorithm. Given a path set P = {A →
B → C,B → C → A,C → A → B}, we can construct a link
dependency graph with three vertices: e1(A → B),e2(B →
C),e3(C → A). It is easy to see that this link dependency
graph contains a loop. Thus, the path set P contains a CBD.

Using Theorem 7, we can prove that up-down routing is
CBD-free in a multi-layered network.

Theorem 8 In a multi-layered network, the path set gener-
ated by up-down routing is CBD-free.

Proof 3 For all the links in a multi-layered network, we can
define a partial order as follows. A link e1 is considered
smaller than another link e2 if either of the following three
conditions is met:

1. e1 is an up link while e2 is a down link;

2. e1, e2 are down links and e1 is at a higher layer than e2;

3. e1, e2 are up links and e1 is at a lower layer than e2.

Then, when we construct a link dependency graph based on
up-down paths, it is easy to verify the following fact: if there is
a directed link from e1 to e2, we must have e2 < e1. Therefore,
the link dependency graph cannot contain a loop. As a result,
the path set generated by up-down routing is CBD-free.

A.2.1 Proof of Lemma 4

Proof 4 Since the path set P is CBD free in G(V,E), the
corresponding link dependency graph G′(V ′,E ′) must con-
tain no loop. In this case, we could construct a new graph
G′′(V ′,E ′′) by adding a link from v1 ∈V ′ to vk ∈V ′ whenever
there exists a sequence of node v2,v3, ...,vk−1 ∈V ′ such that
(vi,vi+1) ∈ E ′ for every i = 1,2, ...,k−1. It is easy to check
that G′′(V ′,E ′′) is also loop-free.

Now we consider the contraction process. Let Ĝ′(V̂ ′, Ê ′)
be the link dependency graph of (Ĝ(V̂ , Ê), P̂ ). We can prove
that Ĝ′(V̂ ′, Ê ′) is a subgraph of G′′(V ′,E ′′). First, in Ĝ(V̂ , Ê),
the edges within each vertex set Vi (i=1,2,...,m) are removed.
Thus, V̂ ′ ⊆V ′. Second, for any edge (e1,e2) ∈ Ê ′, there must
be a path P̂ ∈ P̂ , such that e1 is the next hop of e2 in P̂. Note
that P̂ is obtained by contracting a path P ∈ P . We must have
e1 as a down-streaming hop (not necessarily next hop) of
e2 in P. Based on the construction of G′′(V ′,E ′′), we know
that (e1,e2) ∈ V ′′. Therefore, Ê ′ ⊆ V ′′. Based on the above
analysis, we immediately know that Ĝ′(V̂ ′, Ê ′) is a subgraph
of G′′(V ′,E ′′). Since G′′(V ′,E ′′) is loop-free, Ĝ′(V̂ ′, Ê ′) must
also be loop-free. Then, according to Theorem 7, we must
have that the path set P̂ is CBD free in the topology Ĝ(V̂ , Ê).

A.3 Generating a Clos Network with H Hosts
Using N p-Port Switches

Given N p-port switches and H hosts, we study how to con-
struct a Clos network with the maximum throughput.

We first consider a 2-layered Clos Network. For each
switch, let h be the number of ports connected to hosts. Then,
the total number of switches in the first layer (i.e., the ToR
layer) is ⌈H/h⌉. As long as ⌈H/h⌉ ≤ p, we can put p− h
switches in the second layer and create a complete bipar-
tite graph between the ToR switches and the switches in the
second layer. In total, ⌈H/h⌉+ p− h switches are used. To
maximize throughput, we only need to find the smallest h by
solving the following optimization problem:

min h such that ⌈H/h⌉ ≤ p,⌈H/h⌉+ p−h ≤ N. (5)

In many cases, it may not be feasible to construct a 2-
layered Clos network or a 2-layered Clos network may not
be throughput optimal. Hence, we also need to study how to
construct a multi-layered Clos network.

We adopt a trial-and-error approach to find the throughput
optimal L-layered Clos network (L = 3,4, ...). Starting from
h = 1, we try if it is possible to construct an L-layered Clos



Number
of Servers

Servers
per ToR

Number
of Switches

Number
of OCSs

Copper / Fiber
Cable (km)

Number of
Transceivers

Network Cost
(Million $)

Bisection
Bandwidth

FC Clos FC Clos FC FC Clos FC Clos FC Clos FC Clos

2400
8 16 300 406 24 4.8 / 158.3 4.8 / 40.6 7200 10560 27.58 29.76 1292 1280

12 22 200 220 20 4.8 / 75.1 4.8 / 15.2 4000 4480 17.89 15.71 684 560
16 25 150 166 16 4.8 / 40.2 4.8 / 8.7 2400 2688 12.93 11.62 396 336

4800
8 16 600 860 48 9.6 / 424.7 9.6 / 107.7 14400 19456 55.19 61.52 2526 2432

12 21 400 482 40 9.6 / 202.4 9.6 / 48.7 8000 10560 35.80 34.70 1358 1320
16 25 300 332 16 9.6 / 110.1 9.6 / 22.9 4800 5376 24.90 23.23 772 672

7200
8 16 900 1170 72 14.4 / 760.4 14.4 / 201.5 21600 29696 82.80 85.45 3786 3712

12 21 600 761 40 14.4 / 361.2 14.4 / 88.4 12000 15488 52.50 54.13 2018 1936
16 25 450 526 32 14.4 / 196.6 14.4 / 40.6 7200 8046 37.84 36.50 1156 1008

24000
8 16 3000 5500 240 48.0 / 4513.5 101.3 / 1393.5 72000 97008 276.29 383.53 12716 12288

12 22 2000 2885 140 48.0 / 2047.1 71.6 / 493.8 40000 44298 175.53 199.58 6788 6400
16 25 1500 2052 80 48.0 / 1102.0 62.3 / 268.8 24000 26880 124.60 140.70 3826 3584

48000
8 16 6000 12152 456 96.0 / 13571.0 227.0 / 5065.5 144000 192512 551.85 850.55 25614 24576

12 21 4000 6691 260 96.0 / 5762.6 156.4 / 2071.1 80000 100958 350.11 465.72 13612 12672
16 25 3000 4104 160 96.0 / 3002.8 124.7 / 940.8 48000 53760 249.32 282.75 7674 7168

72000
8 16 9000 21300 696 144.0 / 26774.9 406.1 / 11090.5 216000 288768 829.49 1471.83 38638 36864

12 21 6000 10018 380 144.0 / 10830.7 234.1 / 4480.7 120000 151360 524.91 702.92 20626 19712
16 25 4500 6828 240 144.0 / 5462.5 201.3 / 2021.8 72000 80640 374.11 468.66 11714 10752

Table 4: Cost Analysis: FC vs. Clos.

Switch [2] OCS [8] 2m Copper
Cable [10]

Fiber Cable [13] Transceiver [37]
2m 5m 10m 15m 20m 30m 50m 100m (100 + 50x)m 100m 500m 2000m

$ 59099 $ 60000 $ 189 $ 4.29 $ 4.71 $ 5.29 $ 5.71 $ 6.38 $ 7.38 $ 9.46 $ 16.54 $ (16.54 + 6.3x) $ 499 $ 799 $ 1099

Table 5: Unit Price of Different Network Components.

network using at most N switches. If it is possible, we obtain
the optimal h for the L-layered Clos network; otherwise, we
increase h by one and retry the construction.

Starting from L = 2, we could use the above approach to
find the best h(L) for every L (h(L) = ∞ if it is not feasible
to construct an L-layered Clos network). h(L) may decrease
at the beginning, but will eventually increase with respect
to L. Whenever we see h(L) < h(L+ 1), we can stop and
return the minimum value of h, denoted by h∗. With h∗, the
optimal throughput is (p− h∗)/h∗. When h∗ ≤ ⌊p/2⌋, the
optimal throughput becomes larger than 1. In this case, the
DCN offers abundant capacity while the access links between
servers and ToRs become the bottleneck.

A.4 Network Cost Analysis
We offer a rough estimate about the total network cost for FC
and Clos in this section. The network cost includes the elec-
trical switch cost, the OCS cost and the cabling cost. Given
an FC and a Clos with the same number of servers, we vary
the number of servers per ToR switch and compute the num-
ber of required electrical switches and OCSs (only FC uses
OCSs). To compute the cabling cost, we assume that intra-
rack connections use direct attach copper cables, and inter-
rack connections use optical fibers. An optical fiber requires
an optical transceiver to connect to an electrical switch. The
number of optical transceivers is easy to compute, which is
equal to the total number of connected electrical switch ports

(some switch ports may be unused) minus the total number
of hosts. In contrast, the copper/fiber cable length depends on
the detailed network layouts.

A.4.1 FC’s Layout

In order to estimate the cable length, we make the following
assumptions about FC’s layout. On a data center floor, all the
servers, switches and OCSs are hosted in racks. We use 2d
coordinates (x,y) to represent a rack location.

• The i-th ToR switch is located at
((−1)⌊i/Nr⌋(⌊i/(2Nr))⌋ + 1), i%Nr), where Nr is
the number of racks per column;

• A rack can host four OCSs, and the i-th OCS is located
at (0,⌊i/4⌋).

Fig. 12(a) shows FC’s layout. For FC, the server-ToR connec-
tions use 2-meter copper cables and the ToR-OCS connections
use fiber cables. We use Manhattan distance to compute the
cable length between two racks. We vary Nr so that the total
fiber cable length is minimized.

A.4.2 Clos’s Layout

We focus on 3-layered and 4-layered Clos networks below.
Both the 3-layered and 4-layered Clos networks follow the
ToR-Aggregation-Spine architecture. In a 3-layered Clos,



Number of Switches Number of Servers k
Port Count of

Virtual Switches η Cabling Constriant Average Number of Paths Average Path Length Minimum Number of Paths

500 12000 4 [7, 13, 13, 7] 4 N 16.08 4.57 12.00
Y 16.10 4.57 12.00

1000 24000 4 [7, 13, 13, 7] 7 N 14.01 4.86 9.00
Y 14.01 4.86 9.00

2000 48000 5 [5, 10, 10, 10, 5] 13 N 15.77 5.36 11.00
Y 15.77 5.36 11.00

3000 72000 5 [5, 10, 10, 10, 5] 19 N 14.66 5.54 10.00
Y 14.66 5.53 10.00

5000 120000 5 [5, 10, 10, 10, 5] 32 N 13.28 5.75 9.00
Y 13.28 5.75 9.00

Table 6: Using virtual-layered cabling has little impact on FC’s routing statistics (64-port switches are used).
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(b) Clos cabling.

Figure 12: Layouts of FC and Clos. The red lines are the cable
paths. To avoid visual clutter, most cable paths are omitted.

each spine is an electrical switch; in a 4-layered Clos, each
spine is a 2-layered folded Clos built with electrical switches.
We make the following assumptions about Clos’ layout.

• The aggregation swtches in the i-th PoD are located at
((−1)i(⌊i/2⌋+1),0);

• The j-th ToR switch in the i-th PoD is located at
((−1)i(⌊i/2⌋+1),(−1) j(⌊ j/2⌋+1));

• For a 3-layered Clos, a rack can host 24 spine switches,
and the i-th spine is located at (0,(−1)⌊i/24⌋(⌊(i +
24)/48⌋)). For a 4-layered Clos, we use 2 co-located
racks to host a gigantic spine. Each gigantic spine is a
folded Clos network, with 32 32-port switches in the first
layer and 16 32-port switches in the second layer. The
i-th gigantic spine is located at (0,2(−1)i(⌊(i+1)/2⌋))
and (0,2(−1)i(⌊(i + 1)/2⌋) + 1). Note that the intra-
spine links use copper cables.

Fig. 12(b) shows Clos Network’s layout. For Clos, the ToR-
Aggregation and Aggregation-Spine connections use fiber
cables. The Server-ToR connections use 2-meter copper ca-
bles. For 4-layered Clos, the intra-Spine connections also use
2-meter copper cables. Again, we use Manhattan distance to
compute the cable length between two racks.

A.4.3 Comparison Results

Table 4 compares the number of electrical switches/optical
transceivers/OCSs and the copper/fiber cable length for FC

and Clos networks. For each row, the number of servers per
ToR in a Clos network has been carefully chosen such that its
bisection bandwidth is equal to or slightly lower than that of
FC. Generally speaking, given an FC and a Clos with the same
number of hosts and similar bisection bandwidth, FC requires
fewer number of electrical switches and optical transceivers,
but it requires more fiber cables and additional OCSs.

Next, we offer a rough estimate on the total network cost
for FC and Clos. The unit prices of different network compo-
nents are summarized in Table 5. A 32×400Gbps electrical
switch costs about $59000 [2] and a 320×320 optical circuit
switch costs about $60000 [8]. Intra-rack connections, includ-
ing server-ToR connections and intra-spine connections, use
2-meter 400Gbps copper cables, which cost about $189 [10].
The price of fiber cables increases sub-linearly with respect
to the fiber length [13]. (The prices listed in [13] are the
prices for 12-fiber bundles. We have divided the original price
numbers by 12 in Table 5.) Hence, for each fiber cable used,
we pick the shortest fiber in Table 5 that is longer than this
fiber cable and use its price as the cost. The price of optical
transceivers also varies depending on the transmission dis-
tance [37]. For FC, we use 2km optical transceivers because
the adopted transceivers must have enough power budget to
traverse an OCS. Note that traversing an OCS typically in-
curs about 1.5dB loss (at most 3dB) [8]. For Clos, we choose
between 100m or 500m optical transceivers depending on the
fiber cable length. We compare the total network cost in Table
4. When the network size is small (3-layered Clos is used),
FC and Clos have similar network cost; when the network
size is large (4-layered Clos is used), FC’s network cost is
smaller. In addition, under similar bisection bandwidth, FC
uses fewer number of electrical switches and thus its network
power consumption is lower (the power consumption of an
OCS is only 50watts [8], which is negligible).

A.5 Additional Results

A.5.1 Impact of Cabling on FC’s Routing

We generate FC’s topology of different sizes & η values and
evaluate if the virtual-layered cabling strategy has any impact
on FC’s routing. From Table 6, we cannot see clear difference
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(a) Throughput of the all to all traffic matrix.
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(b) Throughput of uniform random traffic matrices.
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(c) Throughput of the near-worst traffic matrix.

Figure 13: Throughput simulation results using 64-port switches.

Number of Switches Number of servers k
Port Count of

Virtual Switches Routing
Average Number

of Paths
Average Path

Length
Average Shortest

Path Length

500 12000 4 [7, 13, 13, 7] Edge Disjoint Up-down 16.08 4.57 3.20
EDST 20 18.34 5.26

1000 24000 4 [7, 13, 13, 7] Edge Disjoint Up-down 14.01 4.86 3.50
EDST 20 26.52 6.99

2000 48000 4 [7, 13, 13, 7] Edge Disjoint Up-down 11.85 5.13 7.00
EDST 20 33.49 9.12

3000 72000 4 [7, 13, 13, 7] Edge Disjoint Up-down 10.63 5.30 6.00
EDST 20 39.82 10.45

Table 7: Edge-Disjoint Virtual Up-down Routing vs. the EDST Routing (64-port Switches are Used).

when we enable/disable the cabling contraints.

A.5.2 Throughput Analysis

Clos, FC and Expander+EDST are three network architectures
that are guaranteed to be deadlock-free. For networks built
using 32-port switches, we demonstrate in Section 4 that

1. FC consistently outperforms Expander+EDST;

2. FC achieves higher throughput than Clos networks under
all-to-all and uniform random traffic patterns.

In this section, we generate FC’s topologies of different
sizes using up to 600 64-port ToR switches. Each ToR switch
has 40 ports connected to other switches and 24 ports con-
nected to servers. The number of virtual layers k is chosen
based on the strategy (*) in Section 3.2.3. We evaluate both
FC’s edge-disjoint virtual up-down routing and the EDST
routing. For each FC’s topology, we also compare it with a
Clos network generated using roughly the same number of
switches with throughput optimized. From Fig. 13, we can
see that the above conclusions on FC’s throughput benefits
also hold for networks built using 64-port switches.

A.5.3 Routing-Path Analysis

We then perform the same routing-path analysis for FC’s
edge-disjoint virtual up-down routing and the EDST rout-
ing. We generate FC’s topologies of different sizes (N =
500/1000/2000/3000) using 64-port ToR switches with s =
40. As shown in Table 7, the average path length under FC’s
routing is still much shorter than that under the EDST routing.

A.5.4 More Packet-Level Simulation Results

In Section 5, we perform packet-level simulation for three
network setups: FC, FC+EDST, and Clos. Here, we present
the detailed simulation results. We plot the CDFs for FCTs in
Fig. 14. Apparently, the FCT performance under FC’s routing
is much better than that under the EDST routing. Hence, we
mainly focus on the comparison between FC and Clos.

Under the all-to-all traffic pattern and the uniform random
traffic pattern, FC achieves clearly better FCT performance
than Clos because it has higher throughput. This coincides
with our throughput analysis in Section 4.3.

However, under the near-worst traffic pattern, we find that
FC’s FCT performance is just slightly worse than the Clos net-
work’s FCT performance. In contrast, our throughput analysis
in Section 4.3 suggests that FC’s throughput is lower than the
corresponding Clos network’s throughput. (In this case, FC’s
throughput under the near-worst pattern is about 0.5, while
the Clos network’s throughput is about 0.78.) The reason is
that, the average hop count under FC is shorter than that under
a Clos network; when the network is not congested, having a
smaller average hop count compensates for the throughput gap
between FC and Clos. Nevertheless, as network load increases,
FC will encounter more severe congestion than Clos. We per-
form another simulation for the near-worst traffic pattern with
network load increased from 0.3 to 0.7. (More specifically,
we increase the size of each flow by 7/3 times.) As shown in
Fig. 14(d), we can see that FC’s FCT performance is much
worse than the Clos network’s FCT performance. In fact, we
see a large amount of PFC PAUSE frames in FC’s network.
But the good news is, there is no deadlock.
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(a) All-to-all traffic pattern (Network Load= 0.3).
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(c) Near-worst traffic pattern (Network Load= 0.3).
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Figure 14: Compare FCTs for FC, Clos and Expander+EDST.
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